IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/40452.html
   My bibliography  Save this paper

Asymptotic theory for partly linear models

Author

Listed:
  • Gao, Jiti

Abstract

This paper considers a partially linear model of the form y = x beta + g(t) + e, where beta is an unknown parameter vector, g(.) is an unknown function, and e is an error term. Based on a nonparametric estimate of g(.), the parameter beta is estimated by a semiparametric weighted least squares estimator. An asymptotic theory is established for the consistency of the estimators.

Suggested Citation

  • Gao, Jiti, 1994. "Asymptotic theory for partly linear models," MPRA Paper 40452, University Library of Munich, Germany, revised 02 Dec 1994.
  • Handle: RePEc:pra:mprapa:40452
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/40452/1/MPRA_paper_40452.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    2. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneiros-Perez, G. & Vilar-Fernandez, J.M., 2008. "Local polynomial estimation in partial linear regression models under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2757-2777, January.
    2. You, Jinhong & Zhou, Xian, 2006. "Statistical inference in a panel data semiparametric regression model with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 844-873, April.
    3. Zhensheng Huang, 2012. "Empirical likelihood for varying-coefficient single-index model with right-censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 55-71, January.
    4. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    5. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    6. Huang, Tzee-Ming & Chen, Hung, 2008. "Estimating the parametric component of nonlinear partial spline model," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1665-1680, September.

    More about this item

    Keywords

    Asymptotic normality; linear process; partly linear model; strong consistency;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:40452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.