IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i7p827-837.html
   My bibliography  Save this article

Seasonality analysis of time series in partial linear models

Author

Listed:
  • Q. Shao

Abstract

Seasonality analysis is one of the classic topics in time series. This paper studies techniques for seasonality analysis when the trend function is unspecified. The asymptotic properties of the semiparametric estimators are derived, and an estimation algorithm is provided. The techniques are applied to making inference for the monthly global land–ocean temperature anomaly indexes.

Suggested Citation

  • Q. Shao, 2009. "Seasonality analysis of time series in partial linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 827-837.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:827-837
    DOI: 10.1080/10485250903108391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903108391
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903108391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Eva & Nunez-Anton, Vicente & Rodriguez-Poo, Juan, 2000. "Semiparametric approaches to signal extraction problems in economic time series," Computational Statistics & Data Analysis, Elsevier, vol. 33(3), pages 315-333, May.
    2. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    3. Hart, Jeffrey D., 1989. "Differencing as an approximate de-trending device," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 251-259, April.
    4. Gao, Jiti, 1994. "Asymptotic theory for partly linear models," MPRA Paper 40452, University Library of Munich, Germany, revised 02 Dec 1994.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    2. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    3. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. repec:nsb:wpaper:18 is not listed on IDEAS
    6. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    7. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    8. Zhu, Xuehu & Wang, Tao & Zhao, Junlong & Zhu, Lixing, 2017. "Inference for biased transformation models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 105-120.
    9. Martin-Rodriguez, Gloria & Caceres-Hernandez, Jose Juan, 2009. "The Proportion of the Seasonal Period as a Season Index in Weekly Agricultural Data," 2009 Conference, August 16-22, 2009, Beijing, China 49956, International Association of Agricultural Economists.
    10. Huang, Ho-Chuan, 2005. "Diverging evidence of convergence hypothesis," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 233-255, June.
    11. Aifen Feng & Xiaogai Chang & Jingya Fan & Zhengfen Jin, 2023. "Application of LADMM and As-LADMM for a High-Dimensional Partially Linear Model," Mathematics, MDPI, vol. 11(19), pages 1-14, October.
    12. Martín Rodríguez, Gloria & Cáceres Hernández, José Juan, 2010. "Splines and the proportion of the seasonal period as a season index," Economic Modelling, Elsevier, vol. 27(1), pages 83-88, January.
    13. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    14. Xin Lu & Brent A. Johnson, 2015. "Direct estimation of the mean outcome on treatment when treatment assignment and discontinuation compete," Biometrika, Biometrika Trust, vol. 102(4), pages 797-807.
    15. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    16. Mou, Xichen & Wang, Dewei, 2024. "Additive partially linear model for pooled biomonitoring data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    17. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    18. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    19. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    20. Lian, Heng, 2012. "Shrinkage estimation for identification of linear components in additive models," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 225-231.
    21. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:827-837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.