IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/35037.html
   My bibliography  Save this paper

Financial Management of Weather Risk with Energy Derivatives

Author

Listed:
  • Janda, Karel
  • Vylezik, Tomas

Abstract

In this paper we describe the major issues in the weather risk management. We focus on the management of financial risks connected with weather. We first provide a general discussion of the impact of weather on the economy. Then we follow with the overview of the development of the weather risk management. The core of the paper in then devoted to the role of weather derivatives as financial tools for weather risk management.

Suggested Citation

  • Janda, Karel & Vylezik, Tomas, 2011. "Financial Management of Weather Risk with Energy Derivatives," MPRA Paper 35037, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:35037
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/35037/1/MPRA_paper_35037.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geyser, J.M., 2004. "Weather Derivatives: Concept And Application For Their Use In South Africa," Working Papers 18038, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    2. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    3. Adam Clements & A S Hurn & K A Lindsay, 2008. "Estimating the Payoffs of Temperature-based Weather Derivatives," NCER Working Paper Series 33, National Centre for Econometric Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    2. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    3. Adam Clements & A S Hurn & K A Lindsay, 2008. "Developing analytical distributions for temperature indices for the purposes of pricing temperature-based weather derivatives," NCER Working Paper Series 34, National Centre for Econometric Research.
    4. Matthias Ritter, 2012. "Can the market forecast the weather better than meteorologists?," SFB 649 Discussion Papers SFB649DP2012-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    6. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    7. Tseng, Chung-Li & Zhu, Wei & Dmitriev, Alexandre, 2009. "Variable capacity utilization, ambient temperature shocks and generation asset valuation," Energy Economics, Elsevier, vol. 31(6), pages 888-896, November.
    8. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    9. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    10. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2006. "Modeling and Hedging Rain Risk," 2006 Annual meeting, July 23-26, Long Beach, CA 21050, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    12. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    13. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    14. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    15. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    16. Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
    17. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    18. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    19. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.
    20. Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.

    More about this item

    Keywords

    Financial risk; Weather risk; Derivatives; Energy;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.