IDEAS home Printed from https://ideas.repec.org/p/qut/auncer/2008-22.html
   My bibliography  Save this paper

Estimating the Payoffs of Temperature-based Weather Derivatives

Author

Listed:
  • Adam Clements

    (QUT)

  • A S Hurn

    (QUT)

  • K A Lindsay

    (Glasgow)

Abstract

Temperature-based weather derivatives are written on an index which is normally defined to be a nonlinear function of average daily temperatures. Recent empirical work has demonstrated the usefulness of simple time-series models of temperature for estimating the payoffs to these instruments. This paper argues that a more direct and parsimonious approach is to model the time-series behaviour of the index itself, provided a sufficiently rich supply of historical data is available. A data set comprising average daily temperature spanning over a hundred years for four Australian cities is assembled. The data is then used to compare the actual payoffs of temperature-based European call options with the expected payoffs computed from historical temperature records and two time-series approaches. It is concluded that expected payoffs computed directly from historical records perform poorly by comparison with the expected payoffs generated by means of competing time-series models. It is also found that modeling the relevant temperature index directly is superior to modeling average daily temperatures.

Suggested Citation

  • Adam Clements & A S Hurn & K A Lindsay, 2008. "Estimating the Payoffs of Temperature-based Weather Derivatives," NCER Working Paper Series 33, National Centre for Econometric Research.
  • Handle: RePEc:qut:auncer:2008-22
    as

    Download full text from publisher

    File URL: http://www.ncer.edu.au/papers/documents/NCER_WpNo33Aug08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Espen Benth & Jurate Saltyte-Benth, 2005. "Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 53-85.
    2. Eckhard Platen & Jason West, 2004. "A Fair Pricing Approach to Weather Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 23-53, March.
    3. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    4. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Clements & A S Hurn & K A Lindsay, 2008. "Developing analytical distributions for temperature indices for the purposes of pricing temperature-based weather derivatives," NCER Working Paper Series 34, National Centre for Econometric Research.
    2. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
    3. Janda, Karel & Vylezik, Tomas, 2011. "Financial Management of Weather Risk with Energy Derivatives," MPRA Paper 35037, University Library of Munich, Germany.
    4. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Clements & A S Hurn & K A Lindsay, 2008. "Developing analytical distributions for temperature indices for the purposes of pricing temperature-based weather derivatives," NCER Working Paper Series 34, National Centre for Econometric Research.
    2. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    3. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, December.
    4. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767, December.
    5. Fred Benth & Wolfgang Karl Härdle & Brenda López Cabrera, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers SFB649DP2009-046, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, December.
    7. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    8. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    9. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    10. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    11. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    12. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
    13. Hélène Hamisultane, 2008. "Which Method for Pricing Weather Derivatives ?," Working Papers halshs-00355856, HAL.
    14. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    15. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    16. Alessio Giorgini & Rogemar S. Mamon & Marianito R. Rodrigo, 2021. "A Stochastic Harmonic Oscillator Temperature Model for the Valuation of Weather Derivatives," Mathematics, MDPI, vol. 9(22), pages 1-15, November.
    17. Heng Xiong & Rogemar Mamon, 2018. "Putting a price tag on temperature," Computational Management Science, Springer, vol. 15(2), pages 259-296, June.
    18. Lunina, Veronika, 2016. "Joint Modelling of Power Price, Temperature, and Hydrological Balance with a View towards Scenario Analysis," Working Papers 2016:30, Lund University, Department of Economics.
    19. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618, April.
    20. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.

    More about this item

    Keywords

    Temperature; Weather Derivatives; Cooling Degree Days; Time-series Models.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2008-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: School of Economics and Finance (email available below). General contact details of provider: https://edirc.repec.org/data/ncerrau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.