IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/27698.html
   My bibliography  Save this paper

Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing

Author

Listed:
  • Bao, Qunfang
  • Li, Shenghong
  • Liu, Guimei

Abstract

This paper studies survival measures in credit risk models. Survival measure, which was first introduced by Schonbucher [12] in the framework of defaultable LMM, has the advantage of eliminating default indicator variable directly from the expectation by absorbing it into Randon-Nikodym density process. Survival measure approach was further extended by Collin-Duresne[4] to avoid calculating a troublesome jump in IBPR reduced-form model. This paper considers survival measure in "HBPR" model, i.e. default time is characterized by Cox construction, and studies the relevant drift changes and martingale representations. This paper also takes advantage of survival measure to solve the looping default problem in interacting intensity model with stochastic intensities. Guaranteed debt is priced under this model, as an application of survival measure and interacting intensity model. Detailed numerical analysis is performed in this paper to study influence of stochastic pre-default intensities and contagion on value of a two firms' bilateral guaranteed debt portfolio.

Suggested Citation

  • Bao, Qunfang & Li, Shenghong & Liu, Guimei, 2010. "Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing," MPRA Paper 27698, University Library of Munich, Germany, revised 27 Dec 2010.
  • Handle: RePEc:pra:mprapa:27698
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/27698/1/MPRA_paper_27698.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    2. Philipp J. Schönbucher, 2000. "A Libor Market Model with Default Risk," Bonn Econ Discussion Papers bgse15_2001, University of Bonn, Germany.
    3. Kwai Leung & Yue Kwok, 2009. "Counterparty Risk for Credit Default Swaps: Markov Chain Interacting Intensities Model with Stochastic Intensity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 169-181, September.
    4. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Qunfang & Chen, Si & Liu, Guimei & Li, Shenghong, 2010. "Unilateral CVA for CDS in Contagion Model_with Volatilities and Correlation of Spread and Interest," MPRA Paper 26277, University Library of Munich, Germany.
    2. Bao, Qunfang & Chen, Si & Liu, Guimei & Li, Shenghong, 2010. "Unilateral CVA for CDS in Contagion model: With volatilities and correlation of spread and interest," MPRA Paper 28250, University Library of Munich, Germany, revised 27 Dec 2010.

    More about this item

    Keywords

    Survival Measure; Interacting Intensity Model; Measure Change; Guaranteed Debt; Mitigation and Contagion.;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.