IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01240736.html
   My bibliography  Save this paper

Financial Models with Defaultable Numéraires

Author

Listed:
  • Travis Fisher
  • Sergio Pulido

    (ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise, LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

  • Johannes Ruf

    (Department of Mathematics London School of Economics - LSE - London School of Economics and Political Science)

Abstract

Financial models are studied where each asset may potentially lose value relative to any other. Conditioning on non-devaluation, each asset can serve as proper numéraire and classical valuation rules can be formulated. It is shown when and how these local valuation rules can be aggregated to obtain global arbitrage-free valuation formulas.

Suggested Citation

  • Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial Models with Defaultable Numéraires," Post-Print hal-01240736, HAL.
  • Handle: RePEc:hal:journl:hal-01240736
    DOI: 10.1111/mafi.12178
    Note: View the original document on HAL open archive server: https://hal.science/hal-01240736v4
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01240736v4/document
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    2. António Câmara & Steven L. Heston, 2008. "Closed‐form option pricing formulas with extreme events," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(3), pages 213-230, March.
    3. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    4. Louis Paulot, 2013. "Arbitrage-Free Pricing Before and Beyond Probabilities," Papers 1310.1102, arXiv.org.
    5. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    6. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    8. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    9. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    10. Kardaras, Constantinos, 2015. "Valuation and parities for exchange options," LSE Research Online Documents on Economics 65535, London School of Economics and Political Science, LSE Library.
    11. Peter Carr & Travis Fisher & Johannes Ruf, 2012. "Why are quadratic normal volatility models analytically tractable?," Papers 1202.6187, arXiv.org, revised Mar 2013.
    12. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Černý, Aleš & Ruf, Johannes, 2021. "Simplified stochastic calculus with applications in Economics and Finance," European Journal of Operational Research, Elsevier, vol. 293(2), pages 547-560.
    2. Černý, Aleš & Ruf, Johannes, 2020. "Simplified stochastic calculus with applications in economics and finance," LSE Research Online Documents on Economics 108156, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial models with defaultable numéraires," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 117-136, January.
    2. Travis Fisher & Sergio Pulido & Johannes Ruf, 2015. "Financial Models with Defaultable Num\'eraires," Papers 1511.04314, arXiv.org, revised Oct 2017.
    3. Travis Fisher & Sergio Pulido & Johannes Ruf, 2017. "Financial Models with Defaultable Numéraires," Working Papers hal-01240736, HAL.
    4. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    5. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    6. Martin HERDEGEN & Martin SCHWEIZER, 2016. "Economically Consistent Valuations and Put-Call Parity," Swiss Finance Institute Research Paper Series 16-02, Swiss Finance Institute.
    7. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018.
    10. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    11. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    12. Antoine Jacquier & Martin Keller-Ressel, 2015. "Implied volatility in strict local martingale models," Papers 1508.04351, arXiv.org.
    13. Alexander M. G. Cox & Zhaoxu Hou & Jan Obloj, 2014. "Robust pricing and hedging under trading restrictions and the emergence of local martingale models," Papers 1406.0551, arXiv.org, revised Jun 2015.
    14. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009.
    15. Keller-Ressel, Martin, 2015. "Simple examples of pure-jump strict local martingales," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4142-4153.
    16. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007.
    17. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    18. Yukihiro Tsuzuki, 2023. "Pitman's Theorem, Black-Scholes Equation, and Derivative Pricing for Fundraisers," Papers 2303.13956, arXiv.org.
    19. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    20. Hardy Hulley & Johannes Ruf, 2019. "Weak Tail Conditions for Local Martingales," Published Paper Series 2019-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    21. Dirk Veestraeten, 2017. "On the multiplicity of option prices under CEV with positive elasticity of variance," Review of Derivatives Research, Springer, vol. 20(1), pages 1-13, April.

    More about this item

    Keywords

    Devaluation; Non-classical valuation formulas; Defaultable numéraire;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01240736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.