IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/23412.html
   My bibliography  Save this paper

Selection of weak VARMA models by Akaïke's information criteria

Author

Listed:
  • Boubacar Mainassara, Yacouba

Abstract

This article considers the problem of orders selections of vector autoregressive moving-average (VARMA) models and the sub-class of vector autoregressive (VAR) models under the assumption that the errors are uncorrelated but not necessarily independent. We relax the standard independence assumption to extend the range of application of the VARMA models, and allow to cover linear representations of general nonlinear processes. We propose a modified criterion to the corrected AIC (Akaïke information criterion) version (AICc) introduced by Tsai and Hurvich (1989). This modified criterion is an approximately unbiased estimator of the Kullback-Leibler discrepancy, originally used to derive AIC-based criteria. Moreover, this criterion requires the estimation of the matrice involved in the asymptotic variance of the quasi-maximum likelihood (QML) estimator of the models, which provide an additional information about models. Monte carlo experiments show that the proposed modified criterion estimates the models orders more accurately than the standard AIC and AICc in large samples and often in small samples.

Suggested Citation

  • Boubacar Mainassara, Yacouba, 2010. "Selection of weak VARMA models by Akaïke's information criteria," MPRA Paper 23412, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:23412
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/23412/1/MPRA_paper_23412.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    2. Francq, Christian & Zakoïan, Jean-Michel, 2007. "HAC estimation and strong linearity testing in weak ARMA models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 114-144, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    AIC; discrepancy; Kullback-Leibler information; QMLE/LSE; order selection; structural representation; weak VARMA models.;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.