IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Asymptotic Theory Of Stochastic Choice Functionals For Prospects With Embedded Comotonic Probability Measures

  • Cadogan, Godfrey
Registered author(s):

    We introduce a monotone class theory of Prospect Theory's value functions, which shows that they can be replaced almost surely by a topological lifting comprised of a class of compact isomorphic maps that embed weakly co-monotonic probability measures, attached to state space, in outcome space. Thus, agents solve a signal extraction problem to obtain estimates of empirical probability weights for prospects under risk and uncertainty. By virtue of the topological lifting, we prove an almost sure isomorphism theorem between compact stochastic choice operators, and well defined outcomes which, under Brouwer-Schauder theory, guarantees fixed point convergence in convex choice sets. Along the way we introduce a risk operator in the Hoffman-Jorgensen class of lifting operators, and value function [averaging] operators with respect to Radon measure. In that set up, suitable binary operations on gain-loss space show that our risk operator is isometric for gains and skewed for losses. The point spectrum from this operator constitutes the range of admissible observations for loss aversion index in a well designed experiment.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: original version
    Download Restriction: no

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22380.

    in new window

    Date of creation: 27 Apr 2010
    Date of revision:
    Handle: RePEc:pra:mprapa:22380
    Contact details of provider: Postal:
    Ludwigstra├če 33, D-80539 Munich, Germany

    Phone: +49-(0)89-2180-2459
    Fax: +49-(0)89-2180-992459
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    3. David Schmeidler, 1989. "Subjective Probability and Expected Utility without Additivity," Levine's Working Paper Archive 7662, David K. Levine.
    4. George Wu & Richard Gonzalez, 1999. "Nonlinear Decision Weights in Choice Under Uncertainty," Management Science, INFORMS, vol. 45(1), pages 74-85, January.
    5. Gerard Debreu, 1957. "Stochastic Choice and Cardinal Utility," Cowles Foundation Discussion Papers 39, Cowles Foundation for Research in Economics, Yale University.
    6. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages S13-29, July.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Dagsvik, John K., 2008. "Axiomatization of stochastic models for choice under uncertainty," Mathematical Social Sciences, Elsevier, vol. 55(3), pages 341-370, May.
    9. Carlo Acerbi, 2001. "Risk Aversion and Coherent Risk Measures: a Spectral Representation Theorem," Papers cond-mat/0107190,
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    11. Lowenstein, George & Prelec, Drazen, 1991. "Negative Time Preference," American Economic Review, American Economic Association, vol. 81(2), pages 347-52, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22380. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.