IDEAS home Printed from
   My bibliography  Save this paper

Risk Aversion and Coherent Risk Measures: a Spectral Representation Theorem


  • Carlo Acerbi


We study a space of coherent risk measures M_phi obtained as certain expansions of coherent elementary basis measures. In this space, the concept of ``Risk Aversion Function'' phi naturally arises as the spectral representation of each risk measure in a space of functions of confidence level probabilities. We give necessary and sufficient conditions on phi for M_phi to be a coherent measure. We find in this way a simple interpretation of the concept of coherence and a way to map any rational investor's subjective risk aversion onto a coherent measure and vice--versa. We also provide for these measures their discrete versions M_phi^N acting on finite sets of N independent realizations of a r.v. which are not only shown to be coherent measures for any fixed N, but also consistent estimators of M_phi for large N. Finally, we find in our results some interesting and not yet fully investigated relationships with certain results known in insurance mathematical literature.

Suggested Citation

  • Carlo Acerbi, 2001. "Risk Aversion and Coherent Risk Measures: a Spectral Representation Theorem," Papers cond-mat/0107190,
  • Handle: RePEc:arx:papers:cond-mat/0107190

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Carlo Acerbi & Dirk Tasche, 2001. "Expected Shortfall: a natural coherent alternative to Value at Risk," Papers cond-mat/0105191,
    5. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304,
    6. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    2. Pablo Lopez Sarabia, 2007. "Transmission And Impact Of The Financial Risk Of The European, Asian And American Stock Markets In The Return Of Mexican IPYC Index," EcoMod2007 23900054, EcoMod.
    3. Cadogan, Godfrey, 2009. "On behavioral Arrow Pratt risk process with applications to risk pricing, stochastic cash flows, and risk control," MPRA Paper 20174, University Library of Munich, Germany.
    4. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    5. Cadogan, Godfrey, 2010. "Asymptotic Theory Of Stochastic Choice Functionals For Prospects With Embedded Comotonic Probability Measures," MPRA Paper 22380, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    2. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    3. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    4. Henryk Zähle, 2011. "Rates of almost sure convergence of plug-in estimates for distortion risk measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 267-285, September.
    5. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    6. Ruiz, Esther & Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Wojciech Antoniak, 2013. "Wpływ reasekuracji i retrocesji na własności składek," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 77-97.
    8. Acerbi Carlo & Simonetti Prospero, 2002. "Portfolio Optimization with Spectral Measures of Risk," Papers cond-mat/0203607,
    9. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    10. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573,, revised Jun 2016.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493,, revised Sep 2016.
    14. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    15. Luis Fernando Melo Velandia & Oscar Reinaldo Becerra Camargo, 2005. "Medidas De Riesgo, Caracteristicas Y Técnicas De Medición: Una Aplicación Del Var Y El Es A La Tasa Interbancaria De Colombia," BORRADORES DE ECONOMIA 003198, BANCO DE LA REPÚBLICA.
    16. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    17. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    18. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    19. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    20. Gürtler, Marc & Hibbeln, Martin & Vöhringer, Clemens, 2007. "Measuring concentration risk for regulatory purposes," Working Papers IF26V4, Technische Universität Braunschweig, Institute of Finance.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0107190. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.