IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Empirical probability distribution of journal impact factor and over-the-samples stability in its estimated parameters

Listed author(s):
  • Mishra, SK

The data on JIFs provided by Thomson Scientific can only be considered as a sample since they do not cover the entire universe of those documents that cite an intellectual output (paper, article, etc) or are cited by others. Then, questions arise if the empirical distribution (best fit to the JIF data for any particular year) really represents the true or universal distribution, are its estimated parameters stable over the samples and do they have some scientific interpretation? It may be noted that if the estimated parameters do not exhibit stability over the samples (while the sample size is large enough), they cannot be scientifically meaningful, since science is necessarily related with a considerable degree of regularity and predictability. Stability of parameters is also a precondition to other statistical properties such as consistency. If the estimated parameters lack in stability and scientific meaning, then the empirical distribution, howsoever fit to data, has little significance. This study finds that although Burr-4p, Dagum-4p and Johnson SU distributions fit extremely well to the sub-samples, the parameters of the first two distributions do not have stability over the subsamples. The Johnson SU parameters have this property.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 20919.

in new window

Date of creation: 20 Feb 2010
Handle: RePEc:pra:mprapa:20919
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
  2. Egghe, L., 2009. "Mathematical derivation of the impact factor distribution," Journal of Informetrics, Elsevier, vol. 3(4), pages 290-295.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20919. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.