IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15153.html
   My bibliography  Save this paper

OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version

Author

Listed:
  • Mynbaev, Kairat

Abstract

We find the asymptotic distribution of the OLS estimator of the parameters $% \beta$ and $\rho$ in the mixed spatial model with exogenous regressors $% Y_n=X_n\beta+\rho W_nY_n+V_n$. The exogenous regressors may be bounded or growing, like polynomial trends. The assumption about the spatial matrix $W_n $ is appropriate for the situation when each economic agent is influenced by many others. The error term is a short-memory linear process. The key finding is that in general the asymptotic distribution contains both linear and quadratic forms in standard normal variables and is not normal.

Suggested Citation

  • Mynbaev, Kairat, 2009. "OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model: Extended Version," MPRA Paper 15153, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15153
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15153/1/MPRA_paper_15153.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Paelinck, J., 1978. "Spatial econometrics," Economics Letters, Elsevier, vol. 1(1), pages 59-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard COUTROT & Jean H.P. PAELINCK & Alain SALLEZ & Ryan SUTTER, 2009. "On Potentialized Partial Finite Difference Equations: Analyzing The Complexity Of Knowledge-Based Spatial Economic Developments," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 29, pages 237-264.
    2. Jordi Pons-Novell & Elisabet Viladecans-Marsal, 1999. "Kaldor's Laws and Spatial Dependence: Evidence for the European Regions," Regional Studies, Taylor & Francis Journals, vol. 33(5), pages 443-451.
    3. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    4. Jean Paelinck & Mario Polese, 2000. "Modelling the Regional Impact of Continental Economic Integration: Lessons from the European Union for NAFTA," Regional Studies, Taylor & Francis Journals, vol. 33(8), pages 727-738.
    5. Jesus Mur & Ana Angulo, 2005. "A closer look at the Spatial Durbin Model," ERSA conference papers ersa05p392, European Regional Science Association.
    6. Gómez Déniz, Emilio & León Santana, Miguel, 2005. "Un modelo de tarificación Bonus-Malus bajo el principio Esscher con tarifas más competitivas/A Bonus-Malus System with more Competitive rates by using the Esscher Principle," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 79-91, Abril.
    7. David L. Ortega & Raymond J.G.M. Florax & Benoit A. Delbecq, 2010. "Primary Determinants And The Spatial Distribution Of Corruption," Working Papers 10-6, Purdue University, College of Agriculture, Department of Agricultural Economics.
    8. Raffaella SANTOLINI, 2007. "An Empitical Analysis of Political and Informative Trends on Municipalities of an Italian Region," Working Papers 294, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. Jean Paelinck, 2000. "Controlling Complexity in Spatial Modelling," CESifo Working Paper Series 362, CESifo.
    10. Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
    11. Paelinck, Jean H. P., 2011. "On Some Analytical Statistics for Geographic Patterns: From Non-linearity to Linearity," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 11-18.
    12. Demidova, Olga, 2014. "Spatial-autoregressive model for the two groups of related regions (eastern and western parts of Russia)," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 34(2), pages 19-35.
    13. Daniela Antonescu, 2010. "The Analysis of Regional Disparities in Romania with Gini/Struck Coefficients of Concentration," Romanian Journal of Economics, Institute of National Economy, vol. 31(2(40)), pages 160-182, December.
    14. Jesus Mur, 1996. "A Future for Europe? Results with a Regional Prediction Model," Regional Studies, Taylor & Francis Journals, vol. 30(6), pages 549-565.
    15. Paelinck, J. & Mur, J. & Trívez, J., 2004. "Econometría espacial: más luces que sombras," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 1-19, Diciembre.
    16. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús & Paelinck, Jean, 2010. "A Non-Parametric Approach to Spatial Causality," MPRA Paper 36768, University Library of Munich, Germany.
    17. Nikias Sarafoglou & Jean Paelinck, 2008. "On diffusion of ideas in the academic world: the case of spatial econometrics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(2), pages 487-500, June.
    18. Bernardo Furtado & Frank van Oort, 2011. "Neighborhood weight matrix in a spatial-quantile real estate modeling environment: Evidence from Brazil," ERSA conference papers ersa10p424, European Regional Science Association.
    19. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    20. Jesus Mur & Marcos Herrera & Manuel Ruiz, 2011. "Selecting the W Matrix. Parametric vs Nonparametric Approaches," ERSA conference papers ersa11p1055, European Regional Science Association.

    More about this item

    Keywords

    $L_p$-approximability; mixed spatial model; OLS asymptotics;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.