On the Use of the Bass Model for Forecasting Pecuniary Damages: a Reappraisal
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:fek:papers:doi:10.5085/0898-5510-19.3.297 is not listed on IDEAS
- Fan, Zhi-Ping & Che, Yu-Jie & Chen, Zhen-Yu, 2017. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis," Journal of Business Research, Elsevier, vol. 74(C), pages 90-100.
- Kumar, V. & Nagpal, Anish & Venkatesan, Rajkumar, 2002. "Forecasting category sales and market share for wireless telephone subscribers: a combined approach," International Journal of Forecasting, Elsevier, vol. 18(4), pages 583-603.
- Eryarsoy, Enes & Delen, Dursun & Davazdahemami, Behrooz & Topuz, Kazim, 2021. "A novel diffusion-based model for estimating cases, and fatalities in epidemics: The case of COVID-19," Journal of Business Research, Elsevier, vol. 124(C), pages 163-178.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
- Anna Mardumyan & Iris Siret, 2023. "When review verification does more harm than good: How certified reviews determine customer–brand relationship quality," Post-Print hal-04739727, HAL.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
- Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
- Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
- Siotis Georges & Martínez-Granado Maite, 2010. "Sabotaging Entry: An Estimation of Damages in the Directory Enquiry Service Market," Review of Law & Economics, De Gruyter, vol. 6(1), pages 1-57, April.
- Singhal, Shakshi & Bano, Yasmeen & Singh, Ompal, 2025. "Investigating the role of customer's disadoption and dynamic shifts in mobile cellular diffusion: Evidence from emerging economies," Technological Forecasting and Social Change, Elsevier, vol. 219(C).
- Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
- Fei Qu & Yi-Ting Wang & Wen-Hui Hou & Xiao-Yu Zhou & Xiao-Kang Wang & Jun-Bo Li & Jian-Qiang Wang, 2022. "Forecasting of Automobile Sales Based on Support Vector Regression Optimized by the Grey Wolf Optimizer Algorithm," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Abhishek Tandon & Aakash Aakash & Anu G. Aggarwal & P. K. Kapur, 0. "Analyzing the impact of review recency on helpfulness through econometric modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-8.
- Agnieszka Zablocki & Bodo Schlegelmilch & Michael J. Houston, 2019. "How valence, volume and variance of online reviews influence brand attitudes," AMS Review, Springer;Academy of Marketing Science, vol. 9(1), pages 61-77, June.
- Kopalle, Praveen K. & Lehmann, Donald R. & Ramachandran, Divya & Wetzels, Ruud, 2025. "Journal of Business Research Publications 1973–2024: Topics, methodological approaches, data, and analyses conducted," Journal of Business Research, Elsevier, vol. 194(C).
- Singh, Amit & Jenamani, Mamata & Thakkar, Jitesh J. & Rana, Nripendra P., 2022. "Quantifying the effect of eWOM embedded consumer perceptions on sales: An integrated aspect-level sentiment analysis and panel data modeling approach," Journal of Business Research, Elsevier, vol. 138(C), pages 52-64.
- Shagun Srivastava & Madhvendra Misra, 2014. "Developing Evaluation Matrix for Critical Success Factors in Technology Forecasting," Global Business Review, International Management Institute, vol. 15(2), pages 363-380, June.
- Zhang, Chuan & Tian, Yu-Xin & Fan, Zhi-Ping, 2022. "Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1005-1024.
- Han, Zhongya & Tang, Zhongjun & He, Bo, 2022. "Improved Bass model for predicting the popularity of product information posted on microblogs," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
- Jinah Yang & Daiki Min & Jeenyoung Kim, 2020. "The Use of Big Data and Its Effects in a Diffusion Forecasting Model for Korean Reverse Mortgage Subscribers," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
- Wang, Fang & Menon, Kalyani & Ranaweera, Chatura, 2018. "Dynamic trends in online product ratings: A diagnostic utility explanation," Journal of Business Research, Elsevier, vol. 87(C), pages 80-89.
More about this item
Keywords
; ; ;JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:124948. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/pra/mprapa/124948.html