IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/117012.html
   My bibliography  Save this paper

Estimation and Inference for High Dimensional Factor Model with Regime Switching

Author

Listed:
  • Urga, Giovanni
  • Wang, Fa

Abstract

This paper proposes maximum (quasi)likelihood estimation for high dimensional factor models with regime switching in the loadings. The model para- meters are estimated jointly by the EM (expectation maximization) algorithm, which in the current context only requires iteratively calculating regime prob- abilities and principal components of the weighted sample covariance matrix. When regime dynamics are taken into account, smoothed regime probabilities are calculated using a recursive algorithm. Consistency, convergence rates and limit distributions of the estimated loadings and the estimated factors are established under weak cross-sectional and temporal dependence as well as heteroscedasticity. It is worth noting that due to high dimension, regime switching can be identified consistently after the switching point with only one observation. Simulation results show good performance of the proposed method. An application to the FRED-MD dataset illustrates the potential of the proposed method for detection of business cycle turning points.

Suggested Citation

  • Urga, Giovanni & Wang, Fa, 2022. "Estimation and Inference for High Dimensional Factor Model with Regime Switching," MPRA Paper 117012, University Library of Munich, Germany, revised 10 Apr 2023.
  • Handle: RePEc:pra:mprapa:117012
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/117012/1/MPRA_paper_117012.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
    4. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    6. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    7. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    8. Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
    9. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    10. Harding, Don & Pagan, Adrian, 2006. "Synchronization of cycles," Journal of Econometrics, Elsevier, vol. 132(1), pages 59-79, May.
    11. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    12. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    13. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    14. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    15. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    16. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    17. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    18. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    19. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    20. Massimo Guidolin & Allan Timmermann, 2008. "Size and Value Anomalies under Regime Shifts," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 1-48, Winter.
    21. Mikkelsen, Jakob Guldbæk & Hillebrand, Eric & Urga, Giovanni, 2019. "Consistent estimation of time-varying loadings in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 208(2), pages 535-562.
    22. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    23. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    24. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    25. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    26. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2017. "Identification and estimation of a large factor model with structural instability," Journal of Econometrics, Elsevier, vol. 197(1), pages 87-100.
    27. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    28. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    29. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urga, Giovanni & Wang, Fa, 2022. "Estimation and inference for high dimensional factor model with regime switching," MPRA Paper 113172, University Library of Munich, Germany.
    2. Urga, Giovanni & Wang, Fa, 2024. "Estimation and inference for high dimensional factor model with regime switching," Journal of Econometrics, Elsevier, vol. 241(2).
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
    5. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    7. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    8. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    9. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    10. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    11. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE Working Papers halshs-02235543, HAL.
    12. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    13. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    14. Xialu Liu & Elynn Y. Chen, 2022. "Identification and estimation of threshold matrix‐variate factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1383-1417, September.
    15. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    16. Wang, Lu & Wu, Jianhong, 2022. "Estimation of high-dimensional factor models with multiple structural changes," Economic Modelling, Elsevier, vol. 108(C).
    17. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    18. Duan, Jiangtao & Bai, Jushan & Han, Xu, 2023. "Quasi-maximum likelihood estimation of break point in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 233(1), pages 209-236.
    19. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model," OECD Statistics Working Papers 2020/01, OECD Publishing.
    20. Fu, Zhonghao & Hong, Yongmiao & Wang, Xia, 2023. "Testing for structural changes in large dimensional factor models via discrete Fourier transform," Journal of Econometrics, Elsevier, vol. 233(1), pages 302-331.

    More about this item

    Keywords

    Factor model; Regime switching; Maximum likelihood; High dimension; EM algorithm; Turning points;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:117012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.