IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/114147.html
   My bibliography  Save this paper

Pricing Cancellation Product

Author

Listed:
  • Lee, David

Abstract

This article describes a valuation framework to build most common kinds of cancellation schedules and cancellation evens. The model can price generic cancellation derivatives accurately. It is very useful for derivatives trading and risk management.

Suggested Citation

  • Lee, David, 2022. "Pricing Cancellation Product," MPRA Paper 114147, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:114147
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/114147/1/MPRA_paper_114147.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    2. Martzoukos, Spiros H. & Trigeorgis, Lenos, 2002. "Real (investment) options with multiple sources of rare events," European Journal of Operational Research, Elsevier, vol. 136(3), pages 696-706, February.
    3. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    4. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Xiao, 2015. "Is the jump-diffusion model a good solution for credit risk modelling? The case of convertible bonds," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 4(1), pages 1-25.
    2. Xiao, Tim, 2013. "A Simple and Precise Method for Pricing Convertible Bond with Credit Risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(4), pages 259-277.
    3. Xiao, Tim, 2022. "Generic Cancellable Note Analytics," EconStor Preprints 262367, ZBW - Leibniz Information Centre for Economics.
    4. David Finpricing Lee, 2022. "Generic Cancellable Derivative Model," Working Papers hal-03749503, HAL.
    5. Xu, Ruxing, 2011. "A lattice approach for pricing convertible bond asset swaps with market risk and counterparty risk," Economic Modelling, Elsevier, vol. 28(5), pages 2143-2153, September.
    6. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    9. Sascha Meyer & Willi Schwarz, 2003. "A PDE based Implementation of the Hull&White Model for Cashflow Derivatives," Computational Statistics, Springer, vol. 18(3), pages 417-434, September.
    10. Lukas, Elmar & Mölls, Sascha & Welling, Andreas, 2016. "Venture capital, staged financing and optimal funding policies under uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 305-313.
    11. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    12. Hilscher, Jens, 2007. "Is the corporate bond market forward looking?," Working Paper Series 800, European Central Bank.
    13. Reik Borger & Jan van Heys, 2010. "Calibration of the Libor Market Model Using Correlations Implied by CMS Spread Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(5), pages 453-469.
    14. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    15. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    16. Yang, Zhaojun & Zhang, Chunhong, 2015. "Two new equity default swaps with idiosyncratic risk," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 254-273.
    17. Areski Cousin & Ying Jiao & Christian y Robert & Olivier David Zerbib, 2021. "Optimal asset allocation subject to withdrawal risk and solvency constraints," Working Papers hal-03244380, HAL.
    18. repec:uts:finphd:40 is not listed on IDEAS
    19. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    20. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321, arXiv.org.
    21. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.

    More about this item

    Keywords

    cancellable structured note; derivatives valuation;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:114147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.