IDEAS home Printed from
   My bibliography  Save this article

Calibration of the Libor Market Model Using Correlations Implied by CMS Spread Options


  • Reik Borger
  • Jan van Heys


This work discusses the calibration of instantaneous Libor correlations in the Libor market model. We extend the existing calibration strategies by the incorporation of spread option implied correlation information. The correlation structure implied by constant maturity swap (CMS) spread options observed in the present-day market motivates us to extend the existing parameterizations of ratio correlations by a new three-parameter approach. For the first time, this paper presents an extensive empirical study of different parameterizations and their capability to match market correlations. We can show that our approach leads to stable calibrations and gives a satisfactory fit to the market. We conclude our investigation with the pricing of a callable swap on CMS spread using the parameterizations compared before.

Suggested Citation

  • Reik Borger & Jan van Heys, 2010. "Calibration of the Libor Market Model Using Correlations Implied by CMS Spread Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(5), pages 453-469.
  • Handle: RePEc:taf:apmtfi:v:17:y:2010:i:5:p:453-469
    DOI: 10.1080/13504860903541317

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Damiano Brigo & Jan Liinev, 2005. "On the distributional distance between the lognormal LIBOR and swap market models," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 433-442.
    3. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    4. Alan Brace & Dariusz G¬łatarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:5:p:453-469. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.