IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10736.html
   My bibliography  Save this paper

Building an Environmental Quality Index for a big city: a spatial interpolation approach with DP2

Author

Listed:
  • Montero, José María
  • Larraz, Beatriz
  • Chasco, Coro

Abstract

The elaboration of Environmental Quality Indexes (EQI) for big cities is one of the main topics in regional and environmental economics. One of the usual methodological paths consists of generating a single measure as a linear combination of several air contaminants applying Principal Component Analysis (PCA). Then, as a final step, a spatial interpolation is carried out to determine the level of contamination across the city in order to point out the so-called ‘hot points’. In this article, we propose an alternative approach to build an EQI introducing some methodological and practical novelties. From the point of view of the selection of the variables, first we will consider noise -joint to air pollution- as a relevant environmental variable. We also propose to add ‘subjective’ data -available at the census tracts level- to the group of ‘objective’ environmental variables, which are only available at a number of environmental monitoring stations. This combination leads to a mixed environmental index (MEQI), which is more complete and adequate in a socioeconomic context. From the point of view of the computation process, we use kriging to match the monitoring stations registers to the Census data. We follow an inverse process as usual, since it leads to better estimates. In a first step, we krige the environmental variables to the complete surface and finally, we elaborate the environmental index. At last, in order to build the final synthetic index, we do not use Principal Components Analysis -as it is usual in this kind of exercises- but a better one, the Pena Distance method (DP2).

Suggested Citation

  • Montero, José María & Larraz, Beatriz & Chasco, Coro, 2008. "Building an Environmental Quality Index for a big city: a spatial interpolation approach with DP2," MPRA Paper 10736, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:10736
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10736/1/MPRA_paper_10736.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Spence, Jeffrey S. & Carmack, Patrick S. & Gunst, Richard F. & Schucany, William R. & Woodward, Wayne A. & Haley, Robert W., 2007. "Accounting for Spatial Dependence in the Analysis of SPECT Brain Imaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 464-473, June.
    2. Luc Anselin & Nancy Lozano-Gracia, 2008. "Errors in variables and spatial effects in hedonic house price models of ambient air quality," Empirical Economics, Springer, vol. 34(1), pages 5-34, February.
    3. Tzeng, ShengLi & Huang, Hsin-Cheng & Cressie, Noel, 2005. "A Fast, Optimal Spatial-Prediction Method for Massive Datasets," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1343-1357, December.
    4. Gotway C.A. & Young L.J., 2002. "Combining Incompatible Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 632-648, June.
    5. Kenneth Y. Chay & Michael Greenstone, 2005. "Does Air Quality Matter? Evidence from the Housing Market," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 376-424, April.
    6. Spencer Banzhaf, H., 2005. "Green price indices," Journal of Environmental Economics and Management, Elsevier, vol. 49(2), pages 262-280, March.
    7. Jon P. Nelson, 2004. "Meta-Analysis of Airport Noise and Hedonic Property Values," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 1-27, January.
    8. Andrea Baranzini & José V. Ramirez, 2005. "Paying for Quietness: The Impact of Noise on Geneva Rents," Urban Studies, Urban Studies Journal Limited, vol. 42(4), pages 633-646, April.
    9. De Iaco, S. & Myers, D. E. & Posa, D., 2002. "Space-time variograms and a functional form for total air pollution measurements," Computational Statistics & Data Analysis, Elsevier, vol. 41(2), pages 311-328, December.
    10. Won Kim, Chong & Phipps, Tim T. & Anselin, Luc, 2003. "Measuring the benefits of air quality improvement: a spatial hedonic approach," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 24-39, January.
    11. Delucchi, Mark & Murphy, James & McCubbin, Donald, 2002. "The Health and Visibility Cost of Air Pollution: A Comparison of Estimation Methods," Institute of Transportation Studies, Working Paper Series qt03s2x9xb, Institute of Transportation Studies, UC Davis.
    12. Smith, V Kerry & Huang, Ju-Chin, 1995. "Can Markets Value Air Quality? A Meta-analysis of Hedonic Property Value Models," Journal of Political Economy, University of Chicago Press, vol. 103(1), pages 209-227, February.
    13. Helen R. Neill & David M. Hassenzahl & Djeto D. Assane, 2007. "Estimating the Effect of Air Quality: Spatial versus Traditional Hedonic Price Models," Southern Economic Journal, Southern Economic Association, vol. 73(4), pages 1088-1111, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bala, Alain Pholo & Peeters, Dominique & Thomas, Isabelle, 2014. "Spatial issues on a hedonic estimation of rents in Brussels," Journal of Housing Economics, Elsevier, vol. 25(C), pages 104-123.

    More about this item

    Keywords

    Environmental index; Air pollution; Noise; Subjecive expectations; Kriging; Distance indicators;

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10736. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.