IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/74zaw.html
   My bibliography  Save this paper

An Integrated Pipeline Architecture for Modeling Urban Land Use, Travel Demand, and Traffic Assignment

Author

Listed:
  • Waddell, Paul
  • Boeing, Geoff

    (Northeastern University)

  • Gardner, Max
  • Porter, Emily

Abstract

Integrating land use, travel demand, and traffic models represents a gold standard for regional planning, but is rarely achieved in a meaningful way, especially at the scale of disaggregate data. In this report, we present a new pipeline architecture for integrated modeling of urban land use, travel demand, and traffic assignment. Our land use model, UrbanSim, is an open-source microsimulation platform used by metropolitan planning organizations worldwide for modeling the growth and development of cities over long (~30 year) time horizons. UrbanSim is particularly powerful as a scenario analysis tool, enabling planners to compare and contrast the impacts of different policy decisions on long term land use forecasts in a statistically rigorous way. Our travel demand model, ActivitySim, is an agent-based modeling platform that produces synthetic origin--destination travel demand data. Finally, we use a static user equilibrium traffic assignment model based on the Frank-Wolfe algorithm to assign vehicles to specific network paths to make trips between origins and destinations. This traffic assignment model runs in a high-performance computing environment. The resulting congested travel time data can then be fed back into UrbanSim and ActivitySim for the next model run. This technical report introduces this research area, describes this project's achievements so far in developing this integrated pipeline, and presents an upcoming research agenda.

Suggested Citation

  • Waddell, Paul & Boeing, Geoff & Gardner, Max & Porter, Emily, 2018. "An Integrated Pipeline Architecture for Modeling Urban Land Use, Travel Demand, and Traffic Assignment," SocArXiv 74zaw, Center for Open Science.
  • Handle: RePEc:osf:socarx:74zaw
    DOI: 10.31219/osf.io/74zaw
    as

    Download full text from publisher

    File URL: https://osf.io/download/5ab1c8aefb9476000c29d3cb/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. Paul Waddell, 2011. "Integrated Land Use and Transportation Planning and Modelling: Addressing Challenges in Research and Practice," Transport Reviews, Taylor & Francis Journals, vol. 31(2), pages 209-229.
    3. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    4. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    5. Sevcíková, Hana & Raftery, Adrian E. & Waddell, Paul A., 2011. "Uncertain benefits: Application of Bayesian melding to the Alaskan Way Viaduct in Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 540-553, July.
    6. M. T. Gastner & M. E.J. Newman, 2006. "The spatial structure of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(2), pages 247-252, January.
    7. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo Alves Furtado, 2021. "PolicySpace2: modeling markets and endogenous housing policies," Papers 2102.11929, arXiv.org.
    2. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeing, Geoff, 2017. "The Relative Circuity of Walkable and Drivable Urban Street Networks," SocArXiv 4rzqa, Center for Open Science.
    2. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    3. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    4. Boeing, Geoff, 2020. "Street Network Models and Indicators for Every Urban Area in the World," SocArXiv f2dqc, Center for Open Science.
    5. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    6. Martens, Karel & Golub, Aaron & Robinson, Glenn, 2012. "A justice-theoretic approach to the distribution of transportation benefits: Implications for transportation planning practice in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 684-695.
    7. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    8. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    9. Lois, David & López-Sáez, Mercedes, 2009. "The relationship between instrumental, symbolic and affective factors as predictors of car use: A structural equation modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 790-799, November.
    10. Bocarejo S., Juan Pablo & Oviedo H., Daniel Ricardo, 2012. "Transport accessibility and social inequities: a tool for identification of mobility needs and evaluation of transport investments," Journal of Transport Geography, Elsevier, vol. 24(C), pages 142-154.
    11. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    12. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    13. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    14. Carayol, Nicolas & Roux, Pascale, 2009. "Knowledge flows and the geography of networks: A strategic model of small world formation," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 414-427, August.
    15. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    16. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    17. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    18. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    19. Eliasson, Jonas & Savemark, Christian & Franklin, Joel, 2020. "The impact of land use effects in infrastructure appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 262-276.
    20. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:74zaw. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (OSF). General contact details of provider: https://arabixiv.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.