IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/1439.html
   My bibliography  Save this paper

An Approach to Bounded Rationality

Author

Listed:
  • Eli Ben-Sasson
  • Adam Tauman Kalai
  • Ehud Kalai

Abstract

A central question in game theory and artificial intelligence is how a rational agent should behave in a complex environment, given that it cannot perform unbounded computations. We study strategic aspects of this question by formulating a simple model of a game with additional costs (computational or otherwise) for each strategy. First we connect this to zero-sum games, proving a counter-intuitive generalization of the classic min-max theorem to zero-sum games with the addition of strategy costs. We then show that potential games with strategy costs remain potential games. Both zero-sum and potential games with strategy costs maintain a very appealing property: simple learning dynamics converge to equilibrium.

Suggested Citation

  • Eli Ben-Sasson & Adam Tauman Kalai & Ehud Kalai, 2006. "An Approach to Bounded Rationality," Discussion Papers 1439, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:1439
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/1439.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    2. Foster, Dean P. & Vohra, Rakesh, 1999. "Regret in the On-Line Decision Problem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 7-35, October.
    3. Ewerhart, Christian, 2000. "Chess-like Games Are Dominance Solvable in at Most Two Steps," Games and Economic Behavior, Elsevier, vol. 33(1), pages 41-47, October.
    4. Hart, Sergiu & Mas-Colell, Andreu, 2001. "A General Class of Adaptive Strategies," Journal of Economic Theory, Elsevier, vol. 98(1), pages 26-54, May.
    5. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    6. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, January.
    7. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    8. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    9. Ehud Kalai, 1987. "Bounded Rationality and Strategic Complexity in Repeated Games," Discussion Papers 783, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Albert Xin & Leyton-Brown, Kevin & Bhat, Navin A.R., 2011. "Action-Graph Games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 141-173, January.
    2. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.

    More about this item

    Keywords

    bounded rationality; zero sum games; potential games; strategic complexity.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1439. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fran Walker). General contact details of provider: http://edirc.repec.org/data/cmnwuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.