IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/8676.html
   My bibliography  Save this paper

The Transition to a New Economy After the Second Industrial Revolution

Author

Listed:
  • Andrew Atkeson
  • Patrick J. Kehoe

Abstract

During the Second Industrial Revolution, 1860-1900, many new technologies, including electricity, were invented. These inventions launched a transition to a new economy, a period of about 70 years of ongoing, rapid technical change. After this revolution began, however, several decades passed before measured productivity growth increased. This delay is paradoxical from the point of view of the standard growth model. Historians hypothesize that this delay was due to the slow diffusion of new technologies among manufacturing plants together with the ongoing learning in plants after the new technologies had been adopted. The slow diffusion is thought to be due to manufacturers' reluctance to abandon their accumulated expertise with old technologies, which were embodied in the design of existing plants. Motivated by these hypotheses, we build a quantitative model of technology diffusion which we use to study this transition to a new economy. We show that it implies both slow diffusion and a delay in growth similar to that in the data.

Suggested Citation

  • Andrew Atkeson & Patrick J. Kehoe, 2001. "The Transition to a New Economy After the Second Industrial Revolution," NBER Working Papers 8676, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:8676
    Note: DAE EFG PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w8676.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    2. Andreas Hornstein & Per Krusell, 1996. "Can Technology Improvements Cause Productivity Slowdowns?," NBER Chapters, in: NBER Macroeconomics Annual 1996, Volume 11, pages 209-276, National Bureau of Economic Research, Inc.
    3. Atack, Jeremy & Bateman, Fred & Weiss, Thomas, 1980. "The Regional Diffusion and Adoption of the Steam Engine in American Manufacturing," The Journal of Economic History, Cambridge University Press, vol. 40(2), pages 281-308, June.
    4. Bahk, Byong-Hong & Gort, Michael, 1993. "Decomposing Learning by Doing in New Plants," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 561-583, August.
    5. J. Bradford Jensen & Robert H. McGuckin & Kevin J. Stiroh, 2001. "The Impact Of Vintage And Survival On Productivity: Evidence From Cohorts Of U.S. Manufacturing Plants," The Review of Economics and Statistics, MIT Press, vol. 83(2), pages 323-332, May.
    6. Paul A. David & Gavin Wright, "undated". "General Purpose Technologies and Surges in Productivity: Historical Reflections on the Future of the ICT Revolution," Working Papers 99026, Stanford University, Department of Economics.
    7. Brixiova, Zuzana & Kiyotaki, Nobuhiro, 1997. "Private sector development in transition economies," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 46(1), pages 241-279, June.
    8. Erik Brynjolfsson & Lorin M. Hitt, 2000. "Beyond Computation: Information Technology, Organizational Transformation and Business Performance," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 23-48, Fall.
    9. Jovanovic, Boyan & MacDonald, Glenn M, 1994. "Competitive Diffusion," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 24-52, February.
    10. Steven J. Davis & John C. Haltiwanger & Scott Schuh, 1998. "Job Creation and Destruction," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262540932, August.
    11. Philippe Aghion & Olivier J. Blanchard, 1994. "On the Speed of Transition in Central Europe," NBER Chapters, in: NBER Macroeconomics Annual 1994, Volume 9, pages 283-330, National Bureau of Economic Research, Inc.
    12. Robert J. Gordon, 2000. "Does the "New Economy" Measure Up to the Great Inventions of the Past?," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 49-74, Fall.
    13. Atkenson, Andrew & Khan, Aubhik & Ohanian, Lee, 1996. "Are data on industry evolution and gross job turnover relevant for macroeconomics?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 44(1), pages 215-239, June.
    14. Castanheira, Micael & Roland, Gerard, 2000. "The Optimal Speed of Transition: A General Equilibrium Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(1), pages 219-239, February.
    15. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    16. Hopenhayn, Hugo & Rogerson, Richard, 1993. "Job Turnover and Policy Evaluation: A General Equilibrium Analysis," Journal of Political Economy, University of Chicago Press, vol. 101(5), pages 915-938, October.
    17. Jovanovic, Boyan, 1982. "Selection and the Evolution of Industry," Econometrica, Econometric Society, vol. 50(3), pages 649-670, May.
    18. Andrew Atkeson & Patrick J. Kehoe, . "Industry evolution and transition: the role of information capital," Staff Report, Federal Reserve Bank of Minneapolis.
    19. Chari, V V & Hopenhayn, Hugo, 1991. "Vintage Human Capital, Growth, and the Diffusion of New Technology," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1142-1165, December.
    20. Alfred D. Chandler, 1992. "Organizational Capabilities and the Economic History of the Industrial Enterprise," Journal of Economic Perspectives, American Economic Association, vol. 6(3), pages 79-100, Summer.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:8676. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.