IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/2884.html
   My bibliography  Save this paper

Measurement Error In Cross-Sectional and Longitudinal Labor Market Surveys: Results From Two Validation Studies

Author

Listed:
  • John Bound
  • Charles Brown
  • Greg J. Duncan
  • Willard L. Rodgers

Abstract

This paper reports evidence on the error properties of survey reports of labor market variables such as earnings and work hours. Our primary data source is the PSID Validation Study, a two-wave panel survey of a sample of workers employed by a large firm which also allowed us access to its very detailed records of its workers earnings. etc. The second data source uses individuals' 1977 and 1978 (March Current Population Survey) reports of earnings, matched to Social Security earnings records. In both data sets, individuals: reports of earnings are fairly accurately reported, and the errors are negatively related to true earnings. The latter property reduces the bias due to measurement error when earnings are used as an independent variable, but (unlike the classical-error case) leads to some bias when earnings are the dependent variable. Measurement-error-induced biases when change in earnings is the variable of interest are larger, but not dramatically so. Various measures of hourly earnings were much less reliable than annual earnings. Retrospective reports of unemployment showed considerable under-reporting, even of long spells.

Suggested Citation

  • John Bound & Charles Brown & Greg J. Duncan & Willard L. Rodgers, 1989. "Measurement Error In Cross-Sectional and Longitudinal Labor Market Surveys: Results From Two Validation Studies," NBER Working Papers 2884, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:2884
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w2884.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altonji, Joseph G, 1986. "Intertemporal Substitution in Labor Supply: Evidence from Micro Data," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 176-215, June.
    2. Mathiowetz, Nancy A & Duncan, Greg J, 1988. "Out of Work, Out of Mind: Response Errors in Retrospective Reports of Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(2), pages 221-229, April.
    3. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    4. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    5. Mellow, Wesley & Sider, Hal, 1983. "Accuracy of Response in Labor Market Surveys: Evidence and Implications," Journal of Labor Economics, University of Chicago Press, vol. 1(4), pages 331-344, October.
    6. Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-532, October.
    7. repec:fth:prinin:240 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua D. Angrist, 1990. "Does Labor Supply Explain Fluctuations in Average Hours Worked?," NBER Working Papers 3312, National Bureau of Economic Research, Inc.
    2. Jungmin Lee & Sokbae Lee, 2012. "Does it Matter WHO Responded to the Survey? Trends in the U.S. Gender Earnings Gap Revisited," ILR Review, Cornell University, ILR School, vol. 65(1), pages 148-160, January.
    3. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    4. Jäckle, Annette & Sala, Emanuela & Jenkins, Stephen P. & Lynn, Peter, 2004. "Validation of survey data on income and employment: the ISMIE experience," ISER Working Paper Series 2004-14, Institute for Social and Economic Research.
    5. Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).
    6. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    7. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    8. John Abowd & Martha Stinson, 2011. "Estimating Measurement Error in SIPP Annual Job Earnings: A Comparison of Census Bureau Survey and SSA Administrative Data," Working Papers 11-20, Center for Economic Studies, U.S. Census Bureau.
    9. de Nicola, Francesca & Giné, Xavier, 2014. "How accurate are recall data? Evidence from coastal India," Journal of Development Economics, Elsevier, vol. 106(C), pages 52-65.
    10. Martin H. David & Christopher R. Bollinger, 2005. "I didn't tell, and I won't tell: dynamic response error in the SIPP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 563-569.
    11. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 705-717, November.
    12. Denyse L. Dagenais & Marcel Dagenais, 1995. "Higher Moment Estimators for Linear Regression Models With Errors in the Variables," CIRANO Working Papers 95s-13, CIRANO.
    13. Oyer, Paul, 2004. "Recall bias among displaced workers," Economics Letters, Elsevier, vol. 82(3), pages 397-402, March.
    14. Burt S. Barnow & David Greenberg, 2015. "Do Estimated Impacts on Earnings Depend on the Source of the Data Used to Measure Them? Evidence From Previous Social Experiments," Evaluation Review, , vol. 39(2), pages 179-228, April.
    15. Andrew S. Green, 2017. "Hours Off the Clock," Working Papers 17-44, Center for Economic Studies, U.S. Census Bureau.
    16. Kornfeld, Robert & Bloom, Howard S, 1999. "Measuring Program Impacts on Earnings and Employment: Do Unemployment Insurance Wage Reports from Employers Agree with Surveys of Individuals?," Journal of Labor Economics, University of Chicago Press, vol. 17(1), pages 168-197, January.
    17. Cyrille Hagneré & Arnaud Lefranc, 2006. "Étendue et conséquences des erreurs de mesure dans les données individuelles d'enquête : une évaluation à partir des données appariées des enquêtes emploi et revenus fiscaux," Post-Print hal-01651144, HAL.
    18. Mark C. Berger & Dan A. Black & Frank A. Scott, 1998. "How Well Do We Measure Employer‐Provided Health Insurance Coverage?," Contemporary Economic Policy, Western Economic Association International, vol. 16(3), pages 356-367, July.
    19. Jesse Bricker & Gary V. Engelhardt, 2007. "Measurement Error in Earnings Data in the Health and Retirement Study," Working Papers, Center for Retirement Research at Boston College wp2007-16, Center for Retirement Research, revised Oct 2007.
    20. Chris Skinner & Nigel Stuttard & Gabriele Beissel‐Durrant & James Jenkins, 2002. "The Measurement of Low Pay in the UK Labour Force Survey," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(supplemen), pages 653-676, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:2884. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.