IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/27335.html
   My bibliography  Save this paper

Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model

Author

Listed:
  • Andrew Atkeson
  • Karen Kopecky
  • Tao Zha

Abstract

This paper presents a procedure for estimating and forecasting disease scenarios for COVID-19 using a structural SIR model of the pandemic. Our procedure combines the flexibility of noteworthy reduced-form approaches for estimating the progression of the COVID-19 pandemic to date with the benefits of a simple SIR structural model for interpreting these estimates and constructing forecast and counterfactual scenarios. We present forecast scenarios for a devastating second wave of the pandemic as well as for a long and slow continuation of current levels of infections and daily deaths. In our counterfactual scenarios, we find that there is no clear answer to the question of whether earlier mitigation measures would have reduced the long run cumulative death toll from this disease. In some cases, we find that it would have, but in other cases, we find the opposite — earlier mitigation would have led to a higher long-run death toll.

Suggested Citation

  • Andrew Atkeson & Karen Kopecky & Tao Zha, 2020. "Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model," NBER Working Papers 27335, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:27335
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w27335.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James H. Stock, 2020. "Data Gaps and the Policy Response to the Novel Coronavirus," NBER Working Papers 26902, National Bureau of Economic Research, Inc.
    2. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    3. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    4. Andrew Atkeson, 2020. "How Deadly is COVID-19? Understanding the Difficulties with Estimation of its Fatality Rate," Staff Report 598, Federal Reserve Bank of Minneapolis.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Alexis Akira Toda, 2020. "Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact," Papers 2003.11221, arXiv.org, revised Mar 2020.
    7. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    8. Łukasz Rachel, 2020. "An Analytical Model of Covid-19 Lockdowns," Discussion Papers 2029, Centre for Macroeconomics (CFM).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    2. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    3. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    4. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    5. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    6. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    7. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    9. Andrew Atkeson, 2020. "On Using SIR Models to Model Disease Scenarios for COVID-19," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 41(01), pages 1-35, June.
    10. Daron Acemoglu & Victor Chernozhukov & Ivàn Werning & Michael D. Whinston, 2020. "A Multi-Risk SIR Model with Optimally Targeted Lockdown," CeMMAP working papers CWP14/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Giagheddu, Marta & Papetti, Andrea, 2023. "The macroeconomics of age-varying epidemics," European Economic Review, Elsevier, vol. 151(C).
    12. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    13. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    14. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    15. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    16. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    17. Michael T. Owyang, 2002. "Modeling Volcker as a non-absorbing state: agnostic identification of a Markov-switching VAR," Working Papers 2002-018, Federal Reserve Bank of St. Louis.
    18. Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2005. "Markov-switching structural vector autoregressions: theory and application," FRB Atlanta Working Paper 2005-27, Federal Reserve Bank of Atlanta.
    19. Azar, Jose, 2009. "Electric Cars and Oil Prices," MPRA Paper 15538, University Library of Munich, Germany.
    20. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:27335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.