IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18725.html
   My bibliography  Save this paper

Which News Moves Stock Prices? A Textual Analysis

Author

Listed:
  • Jacob Boudoukh
  • Ronen Feldman
  • Shimon Kogan
  • Matthew Richardson

Abstract

A basic tenet of financial economics is that asset prices change in response to unexpected fundamental information. Since Roll's (1988) provocative presidential address that showed little relation between stock prices and news, however, the finance literature has had limited success reversing this finding. This paper revisits this topic in a novel way. Using advancements in the area of textual analysis, we are better able to identify relevant news, both by type and by tone. Once news is correctly identified in this manner, there is considerably more evidence of a strong relationship between stock price changes and information. For example, market model R-squareds are no longer the same on news versus no news days (i.e., Roll's (1988) infamous result), but now are 16% versus 33%; variance ratios of returns on identified news versus no news days are 120% higher versus only 20% for unidentified news versus no news; and, conditional on extreme moves, stock price reversals occur on no news days, while identified news days show an opposite effect, namely a strong degree of continuation. A number of these results are strengthened further when the tone of the news is taken into account by measuring the positive/negative sentiment of the news story.

Suggested Citation

  • Jacob Boudoukh & Ronen Feldman & Shimon Kogan & Matthew Richardson, 2013. "Which News Moves Stock Prices? A Textual Analysis," NBER Working Papers 18725, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18725
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18725.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    2. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    3. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    4. Elizabeth Demers & Clara Vega, 2008. "Soft information in earnings announcements: news or noise?," International Finance Discussion Papers 951, Board of Governors of the Federal Reserve System (U.S.), revised 2008.
    5. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    6. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    7. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    8. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    9. Angela K. Davis & Jeremy M. Piger & Lisa M. Sedor, 2006. "Beyond the numbers: an analysis of optimistic and pessimistic language in earnings press releases," Working Papers 2006-005, Federal Reserve Bank of St. Louis.
    10. John M. Griffin & Nicholas H. Hirschey & Patrick J. Kelly, 2011. "How Important Is the Financial Media in Global Markets?," Review of Financial Studies, Society for Financial Studies, vol. 24(12), pages 3941-3992.
    11. Roberto C. Gutierrez & Eric K. Kelley, 2008. "The Long‐Lasting Momentum in Weekly Returns," Journal of Finance, American Finance Association, vol. 63(1), pages 415-447, February.
    12. Ball, R & Brown, P, 1968. "Empirical Evaluation Of Accounting Income Numbers," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 159-178.
    13. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    14. Werner Antweiler & Murray Z. Frank, 2004. "Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards," Journal of Finance, American Finance Association, vol. 59(3), pages 1259-1294, June.
    15. Mandelker, Gershon, 1974. "Risk and return: The case of merging firms," Journal of Financial Economics, Elsevier, vol. 1(4), pages 303-335, December.
    16. Vega, Clara, 2006. "Stock price reaction to public and private information," Journal of Financial Economics, Elsevier, vol. 82(1), pages 103-133, October.
    17. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    18. Feng Li, 2010. "The Information Content of Forward‐Looking Statements in Corporate Filings—A Naïve Bayesian Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 48(5), pages 1049-1102, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18725. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.