IDEAS home Printed from https://ideas.repec.org/a/bla/joares/v48y2010i5p1049-1102.html
   My bibliography  Save this article

The Information Content of Forward-Looking Statements in Corporate Filings-A Naïve Bayesian Machine Learning Approach

Author

Listed:
  • FENG LI

Abstract

ABSTRACT This paper examines the information content of the forward-looking statements (FLS) in the Management Discussion and Analysis section (MD&A) of 10-K and 10-Q filings using a Naïve Bayesian machine learning algorithm. I find that firms with better current performance, lower accruals, smaller size, lower market-to-book ratio, less return volatility, lower MD&A Fog index, and longer history tend to have more positive FLSs. The average tone of the FLS is positively associated with future earnings even after controlling for other determinants of future performance. The results also show that, despite increased regulations aimed at strengthening MD&A disclosures, there is no systematic change in the information content of MD&As over time. In addition, the tone in MD&As seems to mitigate the mispricing of accruals. When managers "warn" about the future performance implications of accruals (i.e., the MD&A tone is positive (negative) when accruals are negative (positive)), accruals are not associated with future returns. The tone measures based on three commonly used dictionaries (Diction, General Inquirer, and the Linguistic Inquiry and Word Count) do not positively predict future performance. This result suggests that these dictionaries might not work well for analyzing corporate filings. Copyright (c), University of Chicago on behalf of the Accounting Research Center, 2010.

Suggested Citation

  • Feng Li, 2010. "The Information Content of Forward-Looking Statements in Corporate Filings-A Naïve Bayesian Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 48(5), pages 1049-1102, December.
  • Handle: RePEc:bla:joares:v:48:y:2010:i:5:p:1049-1102
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=joar&volume=48&issue=5&year=2010&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:joares:v:48:y:2010:i:5:p:1049-1102. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0021-8456 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.