IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18292.html
   My bibliography  Save this paper

Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research

Author

Listed:
  • Michael Roach
  • Wesley M. Cohen

Abstract

This paper assesses the validity and accuracy of firms' backward patent citations as a measure of knowledge flows from public research by employing a newly constructed dataset that matches patents to survey data at the level of the R&D lab. Using survey-based measures of the dimensions of knowledge flows, we identify sources of systematic measurement error associated with backward citations to both patent and nonpatent references. We find that patent citations reflect the codified knowledge flows from public research, but they appear to miss knowledge flows that are more private and contract-based in nature, as well as those used in firm basic research. We also find that firms' patenting and citing strategies affect patent citations, making citations less indicative of knowledge flows. In addition, an illustrative analysis examining the magnitude and direction of measurement error bias suggests that measuring knowledge flows with patent citations can lead to substantial underestimation of the effect of public research on firms' innovative performance. Throughout our analyses we find that nonpatent references (e.g., journals, conferences, etc.), not the more commonly used patent references, are a better measure of knowledge originating from public research.

Suggested Citation

  • Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18292
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18292.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Adam B. Jaffe & Michael S. Fogarty & Bruce A. Banks, 1998. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 183-205, June.
    3. Iain M. Cockburn & Rebecca M. Henderson, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    4. David C. Mowery & Bhaven N. Sampat & Arvids A. Ziedonis, 2002. "Learning to Patent: Institutional Experience, Learning, and the Characteristics of U.S. University Patents After the Bayh-Dole Act, 1981-1992," Management Science, INFORMS, vol. 48(1), pages 73-89, January.
    5. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    6. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    7. David D. Friedman & William M. Landes & Richard A. Posner, 1991. "Some Economics of Trade Secret Law," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 61-72, Winter.
    8. Jasjit Singh & Ajay Agrawal, 2011. "Recruiting for Ideas: How Firms Exploit the Prior Inventions of New Hires," Management Science, INFORMS, vol. 57(1), pages 129-150, January.
    9. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    10. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    11. repec:fth:harver:1473 is not listed on IDEAS
    12. Mowery, David C. & Ziedonis, Arvids A., 2002. "Academic patent quality and quantity before and after the Bayh-Dole act in the United States," Research Policy, Elsevier, vol. 31(3), pages 399-418, March.
    13. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    14. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    15. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    16. Megan MacGarvie, 2006. "Do Firms Learn from International Trade?," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 46-60, February.
    17. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    18. Lee Branstetter & Yoshiaki Ogura, 2005. "Is Academic Science Driving a Surge in Industrial Innovation? Evidence from Patent Citations," NBER Working Papers 11561, National Bureau of Economic Research, Inc.
    19. Hicks, Diana, 1995. "Published Papers, Tacit Competencies and Corporate Management of the Public/Private Character of Knowledge," Industrial and Corporate Change, Oxford University Press, vol. 4(2), pages 401-424.
    20. Cockburn, Iain M & Henderson, Rebecca M, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    21. Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
    22. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    23. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    24. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    25. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    26. Paul Almeida & Bruce Kogut, 1999. "Localization of Knowledge and the Mobility of Engineers in Regional Networks," Management Science, INFORMS, vol. 45(7), pages 905-917, July.
    27. Thursby, Jerry & Fuller, Anne W. & Thursby, Marie, 2009. "US faculty patenting: Inside and outside the university," Research Policy, Elsevier, vol. 38(1), pages 14-25, February.
    28. Jerry G. Thursby & Marie C. Thursby, 2002. "Who Is Selling the Ivory Tower? Sources of Growth in University Licensing," Management Science, INFORMS, vol. 48(1), pages 90-104, January.
    29. Emmanuel Duguet & Megan MacGarvie, 2005. "How well do patent citations measure flows of technology? Evidence from French innovation surveys," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 375-393.
    30. Scherer, F. M., 1983. "The propensity to patent," International Journal of Industrial Organization, Elsevier, vol. 1(1), pages 107-128, March.
    31. Pavitt, Keith, 1991. "What makes basic research economically useful?," Research Policy, Elsevier, vol. 20(2), pages 109-119, April.
    32. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    33. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    34. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    35. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    36. Horstmann, Ignatius & MacDonald, Glenn M & Slivinski, Alan, 1985. "Patents as Information Transfer Mechanisms: To Patent or (Maybe) Not to Patent," Journal of Political Economy, University of Chicago Press, vol. 93(5), pages 837-858, October.
    37. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    38. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    39. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Chi Hung, 2012. "Measuring the use of public research in firm R&D in the Hsinchu Science Park," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 63-73, July.
    2. Joshua Graff Zivin & Elizabeth Lyons, 2019. "Increasing STEM undergraduate participation in innovative activities: Field experimental evidence," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    3. Yeon Hak Kim & Aaron D. Levine & Eric J. Nehl & John P. Walsh, 2020. "A bibliometric measure of translational science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2349-2382, December.
    4. Biasi, Barbara & Moser, Petra, 2018. "Effects of Copyrights on Science - Evidence from the US Book Republication Program," CEPR Discussion Papers 12651, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    2. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    3. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    4. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    5. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press, vol. 26(5), pages 821-844.
    6. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    7. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    8. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    9. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    10. Pierre Azoulay & Joshua S. Graff Zivin & Bhaven N. Sampat, 2011. "The Diffusion of Scientific Knowledge across Time and Space: Evidence from Professional Transitions for the Superstars of Medicine," NBER Chapters, in: The Rate and Direction of Inventive Activity Revisited, pages 107-155, National Bureau of Economic Research, Inc.
    11. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    12. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    13. Arts, Sam & Cassiman, Bruno & Veugelers, Reinhilde, 2012. "Mind the gap: capturing value from basic research: boundary crossing inventors and partnerships," CEPR Discussion Papers 9215, C.E.P.R. Discussion Papers.
    14. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    15. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    16. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    17. Cassiman, Bruno & Veugelers, Reinhilde & Zuniga, Pluvia, 2009. "Diversity of science linkages and innovation performance: some empirical evidence from Flemish firms," Economics Discussion Papers 2009-30, Kiel Institute for the World Economy (IfW Kiel).
    18. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    19. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    20. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.