IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v33y2004i10p1615-1634.html
   My bibliography  Save this article

Science and the diffusion of knowledge

Author

Listed:
  • Sorenson, Olav
  • Fleming, Lee

Abstract

No abstract is available for this item.

Suggested Citation

  • Sorenson, Olav & Fleming, Lee, 2004. "Science and the diffusion of knowledge," Research Policy, Elsevier, vol. 33(10), pages 1615-1634, December.
  • Handle: RePEc:eee:respol:v:33:y:2004:i:10:p:1615-1634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(04)00124-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    2. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    3. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    4. Behrens, Teresa R. & Gray, Denis O., 2001. "Unintended consequences of cooperative research: impact of industry sponsorship on climate for academic freedom and other graduate student outcome," Research Policy, Elsevier, vol. 30(2), pages 179-199, February.
    5. Kitch, Edmund W, 1977. "The Nature and Function of the Patent System," Journal of Law and Economics, University of Chicago Press, vol. 20(2), pages 265-290, October.
    6. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    7. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    8. Tijssen, Robert J. W., 2001. "Global and domestic utilization of industrial relevant science: patent citation analysis of science-technology interactions and knowledge flows," Research Policy, Elsevier, vol. 30(1), pages 35-54, January.
    9. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    10. Richard R. Nelson, 1982. "The Role of Knowledge in R&D Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 97(3), pages 453-470.
    11. Sveikauskas, Leo, 1981. "Technological Inputs and Multifactor Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 63(2), pages 275-282, May.
    12. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    13. Partha, Dasgupta & David, Paul A., 1994. "Toward a new economics of science," Research Policy, Elsevier, vol. 23(5), pages 487-521, September.
    14. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    15. Cowan, Robin & Foray, Dominique, 1997. "The Economics of Codification and the Diffusion of Knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(3), pages 595-622, September.
    16. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    17. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    18. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    19. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    20. Mowery, David C. & Ziedonis, Arvids A., 2002. "Academic patent quality and quantity before and after the Bayh-Dole act in the United States," Research Policy, Elsevier, vol. 31(3), pages 399-418, March.
    21. Senker, Jacqueline, 1995. "Tacit Knowledge and Models of Innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 4(2), pages 425-447.
    22. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    23. Gambardella,Alfonso, 1995. "Science and Innovation," Cambridge Books, Cambridge University Press, number 9780521451185.
    24. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    25. Jason Owen-Smith & Walter W. Powell, 2004. "Knowledge Networks as Channels and Conduits: The Effects of Spillovers in the Boston Biotechnology Community," Organization Science, INFORMS, vol. 15(1), pages 5-21, February.
    26. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    2. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    3. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    4. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    5. Novelli, Elena, 2015. "An examination of the antecedents and implications of patent scope," Research Policy, Elsevier, vol. 44(2), pages 493-507.
    6. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    7. Sheer, Lia, 2022. "Sitting on the Fence: Integrating the two worlds of scientific discovery and invention within the firm," Research Policy, Elsevier, vol. 51(7).
    8. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    9. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    10. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    11. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    12. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    13. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    14. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    15. Bonaccorsi, Andrea & Thoma, Grid, 2007. "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Elsevier, vol. 36(6), pages 813-831, July.
    16. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(5), pages 1403-1437, October.
    17. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    18. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    19. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    20. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:33:y:2004:i:10:p:1615-1634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.