IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Time Series from Clusters


  • Marahaj, E.A.
  • Inder, B.


Forecasting large numbers of time series is a costly and time-consuming exercise. Before forecasting a large number of series that are logically connected in some way, the authors can first cluster them into groups of similar series. In this paper they investigate forecasting the series in each cluster. Similar series are first grouped together using a clustering procedure that is based on a test of hypothesis. The series in each cluster are then pooled together and forecasts are obtained. Simulated results show that this procedure for forecasting similar series performs reasonably well.

Suggested Citation

  • Marahaj, E.A. & Inder, B., 1999. "Forecasting Time Series from Clusters," Monash Econometrics and Business Statistics Working Papers 9/99, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1999-9

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
    2. Shah, Chandra, 1997. "Model selection in univariate time series forecasting using discriminant analysis," International Journal of Forecasting, Elsevier, vol. 13(4), pages 489-500, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mehmet BARAN & Sýtký SÖNMEZER & Abdülvahid UÇAR, 2015. "Estimating Financial Trends by Cubic B-Spline Fitting via Fisher Algorithm," Turkish Economic Review, KSP Journals, vol. 2(1), pages 20-25, March.

    More about this item


    Autoregressive models; Clustering technique; Mean square forecast error; Pooled series;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1999-9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.