IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/1999-14.html
   My bibliography  Save this paper

Understanding the Kalman Filter: an Object Oriented Programming Perspective

Author

Abstract

The basic ideals underlying the Kalman filter are outlined in this paper without direct recourse to the complex formulae normally associated with this method. The novel feature of the paper is its reliance on a new algebraic system based on the first two moments of the multivariate normal distribution. The resulting framework lends itself to an object-oriented implementation on computing machines and so many of the ideas are presented in these terms. The paper provides yet another perspective of Kalman filtering, one that many should find relatively easy to understand.

Suggested Citation

  • Snyder, R.D. & Forbes, C.S., 1999. "Understanding the Kalman Filter: an Object Oriented Programming Perspective," Monash Econometrics and Business Statistics Working Papers 14/99, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:1999-14
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/1999/wp14-99.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Time series analysis; forecasting; Kalman filter; dynamic linear statistical models; object oriented programming.;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:1999-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.