IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/16077.html
   My bibliography  Save this paper

On a class of vertices of the core

Author

Listed:

Abstract

It is known that for supermodular TU-games, the vertices of the core are the marginal vectors, and this result remains true for games where the set of feasible coalitions is a distributive lattice. Such games are induced by a hierarchy (partial ordre) on players. We propose a larger class of vertices for games on distributive lattices, called min-max vertices, obtained by minimizing or maximizing in a given order the coordinates of a core element. We give a simple formula which does not need to solve an optimization problem to compute these vertices, valid for connected hierarchies and for the general case under some restrictions. We find under which conditions two different orders induce the same vertex for every game, and show that there exist balanced games whose core has vertices which are not min-max vertices if and only if n > 4

Suggested Citation

  • Michel Grabisch & Peter Sudhölter, 2016. "On a class of vertices of the core," Documents de travail du Centre d'Economie de la Sorbonne 16077, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:16077
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2016/16077.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grabisch, Michel & Sudhölter, Peter, 2014. "On the restricted cores and the bounded core of games on distributive lattices," European Journal of Operational Research, Elsevier, vol. 235(3), pages 709-717.
    2. Marina Núñez & Carles Rafels, 1998. "On extreme points of the core and reduced games," Annals of Operations Research, Springer, vol. 84(0), pages 121-133, December.
    3. repec:hal:cesptp:hal-00803233 is not listed on IDEAS
    4. Josep Izquierdo & Marina Núñez & Carles Rafels, 2007. "A simple procedure to obtain the extreme core allocations of an assignment market," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 17-26, September.
    5. Tijs, S.H., 2005. "The First Steps with Alexia, the Average Lexicographic Value," Discussion Paper 2005-123, Tilburg University, Center for Economic Research.
    6. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    7. Derks, Jean J M & Gilles, Robert P, 1995. "Hierarchical Organization Structures and Constraints on Coalition Formation," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 147-163.
    8. Michel Grabisch & Peter Sudhölter, 2016. "Characterizations of solutions for games with precedence constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 269-290, March.
    9. Marina Núñez & Tamás Solymosi, 2017. "Lexicographic allocations and extreme core payoffs: the case of assignment games," Annals of Operations Research, Springer, vol. 254(1), pages 211-234, July.
    10. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    11. repec:hal:cesptp:halshs-00950109 is not listed on IDEAS
    12. Tijs, Stef & Borm, Peter & Lohmann, Edwin & Quant, Marieke, 2011. "An average lexicographic value for cooperative games," European Journal of Operational Research, Elsevier, vol. 213(1), pages 210-220, August.
    13. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    14. Nunez, Marina & Rafels, Carles, 2003. "Characterization of the extreme core allocations of the assignment game," Games and Economic Behavior, Elsevier, vol. 44(2), pages 311-331, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    TU games; restricted cooperation; game with precedence constraints; core; vertex;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:16077. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label) or (Cindy George). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.