IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2025-06.html
   My bibliography  Save this paper

A test for instrumental variable validity using a correlation restriction

Author

Listed:
  • Ratbek Dzhumashev

    (Department of Economics, Monash University)

  • Ainura Tursunalieva

    (Data61, CSIRO)

Abstract

DiTraglia and García-Jimeno (2021) demonstrate that the correlation coefficients between an IV, an endogenous regressor, and the outcome variable must satisfy a specific joint constraint determined by their relationships with the structural error term. We exploit this constraint to develop a novel Correlation Restriction test that becomes feasible when the direction of endogeneity bias is known. Our test quantifies the probability of instrument orthogonality to the structural error across the plausible range of endogeneity magnitudes, providing researchers with a previously unavailable diagnostic tool in the frequentist setting. Through simulations and applications to diverse empirical settings including returns to education, criminal recidivism, and development economics, we establish that our method reliably identifies invalid instruments and characterizes the endogeneity range over which valid instruments maintain their exogeneity. This approach contributes to instrumental variable methods by transforming a key identification assumption from an untestable assertion into an empirically verifiable condition.

Suggested Citation

  • Ratbek Dzhumashev & Ainura Tursunalieva, 2025. "A test for instrumental variable validity using a correlation restriction," Monash Economics Working Papers 2025-06, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2025-06
    as

    Download full text from publisher

    File URL: http://monash-econ-wps.s3-ap-southeast-2.amazonaws.com/RePEc/mos/moswps/2025-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F F Gunsilius, 2021. "Nontestability of instrument validity under continuous treatments [Identification of causal effects using instrumental variables]," Biometrika, Biometrika Trust, vol. 108(4), pages 989-995.
    2. Abhijit Banerjee & Lakshmi Iyer, 2005. "History, Institutions, and Economic Performance: The Legacy of Colonial Land Tenure Systems in India," American Economic Review, American Economic Association, vol. 95(4), pages 1190-1213, September.
    3. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    4. Linbo Wang & James M. Robins & Thomas S. Richardson, 2017. "On falsification of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 104(1), pages 229-236.
    5. Rafael Di Tella & Ernesto Schargrodsky, 2013. "Criminal Recidivism after Prison and Electronic Monitoring," Journal of Political Economy, University of Chicago Press, vol. 121(1), pages 28-73.
    6. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    7. Toru Kitagawa, 2015. "A Test for Instrument Validity," Econometrica, Econometric Society, vol. 83(5), pages 2043-2063, September.
    8. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
    9. Zhichao Jiang & Peng Ding, 2020. "Measurement errors in the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 107(1), pages 238-245.
    10. Karim Chalak, 2019. "Identification of average effects under magnitude and sign restrictions on confounding," Quantitative Economics, Econometric Society, vol. 10(4), pages 1619-1657, November.
    11. Berkowitz, Daniel & Caner, Mehmet & Fang, Ying, 2012. "The validity of instruments revisited," Journal of Econometrics, Elsevier, vol. 166(2), pages 255-266.
    12. Francis J. DiTraglia & Camilo García-Jimeno, 2021. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1038-1053, October.
    13. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    14. Sebastian Galiani & Martín A. Rossi & Ernesto Schargrodsky, 2011. "Conscription and Crime: Evidence from the Argentine Draft Lottery," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 119-136, April.
    15. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    16. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    17. Linbo Wang & James M. Robins & Thomas S. Richardson, 2017. "Erratum: On falsification of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 104(1), pages 1-1.
    18. Dana Burde & Leigh L. Linden, 2013. "Bringing Education to Afghan Girls: A Randomized Controlled Trial of Village-Based Schools," American Economic Journal: Applied Economics, American Economic Association, vol. 5(3), pages 27-40, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis DiTraglia & Camilo García-Jimeno, 2016. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," NBER Working Papers 22621, National Bureau of Economic Research, Inc.
    2. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    3. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Papers 2011.07276, arXiv.org.
    4. Damian Clarke & Benjamín Matta, 2018. "Practical considerations for questionable IVs," Stata Journal, StataCorp LLC, vol. 18(3), pages 663-691, September.
    5. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models, Third Version," PIER Working Paper Archive 15-030, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Sep 2015.
    6. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    7. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models, Second Version," PIER Working Paper Archive 15-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 31 Aug 2015.
    8. Yu‐Chin Hsu & Xiaoxia Shi, 2017. "Model‐selection tests for conditional moment restriction models," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 52-85, February.
    9. Seyed Morteza Emadi, 2024. "Testing the Exogeneity of Instrumental Variables and Regressors in Linear Regression Models Using Copulas," Papers 2401.15253, arXiv.org.
    10. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    11. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    12. Sarrias, Mauricio & Blanco, Alejandra, 2022. "Bodyweight and human capital development: Assessing the impact of obesity on socioemotional skills during childhood in Chile," Economics & Human Biology, Elsevier, vol. 47(C).
    13. Joshua C. C. Chan & Justin L. Tobias, 2015. "Priors and Posterior Computation in Linear Endogenous Variable Models with Imperfect Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 650-674, June.
    14. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    15. Kyunghoon Ban & Désiré Kédagni, 2022. "Nonparametric bounds on treatment effects with imperfect instruments [Instrument-based estimation with binarized treatments: Issues and tests for the exclusion restriction]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 477-493.
    16. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    17. Hans (J.L.W.) van Kippersluis & Niels (C.A.) Rietveld, 2017. "Beyond Plausibly Exogenous," Tinbergen Institute Discussion Papers 17-096/V, Tinbergen Institute.
    18. repec:osf:socarx:bwxfz_v1 is not listed on IDEAS
    19. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    20. Jörg Peters & Jörg Langbein & Gareth Roberts, 2018. "Generalization in the Tropics – Development Policy, Randomized Controlled Trials, and External Validity," The World Bank Research Observer, World Bank, vol. 33(1), pages 34-64.
    21. Byeong Yeob Choi, 2024. "Instrumental variable estimation of weighted local average treatment effects," Statistical Papers, Springer, vol. 65(2), pages 737-770, April.

    More about this item

    Keywords

    endogeneity; validity of instrumental variable; linear regression;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2025-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.