IDEAS home Printed from
   My bibliography  Save this paper

Pareto optimal matchings of students to courses in the presence of prerequisites


  • Katarina Cechlarova
  • Bettina Klaus
  • David F.Manlove


We consider the problem of allocating applicants to courses, where each applicant has a subset of acceptable courses that she ranks in strict order of preference. Each applicant and course has a capacity, indicating the maximum number of courses and applicants they can be assigned to, respectively. We thus essentially have a many-tomany bipartite matching problem with one-sided preferences, which has applications to the assignment of students to optional courses at a university. We consider additive preferences and lexicographic preferences as two means of extending preferences over individual courses to preferences over bundles of courses. We additionally focus on the case that courses have prerequisite constraints: we will mainly treat these constraints as compulsory, but we also allow alternative prerequisites. We further study the case where courses may be corequisites. For these extensions to the basic problem, we present the following algorithmic results, which are mainly concerned with the computation of Pareto optimal matchings (POMs). Firstly, we consider compulsory prerequisites. For additive preferences, we show that the problem of finding a POM is NP-hard. On the other hand, in the case of lexicographic preferences we give a polynomial-time algorithm for finding a POM, based on the well-known sequential mechanism. However we show that the problem of deciding whether a given matching is Pareto optimal is co-NP-complete. We further prove that finding a maximum cardinality (Pareto optimal) matching is NP-hard. Under alternative prerequisites, we show that finding a POM is NP-hardfor either additive or lexicographic preferences. Finally we consider corequisites. We prove that, as in the case of compulsory prerequisites, finding a POM is NP-hard for additive preferences, though solvable in polynomial time for lexicographic preferences. In the latter case, the problem of finding a maximum cardinality POM is NP-hard and very difficult to approximate.

Suggested Citation

  • Katarina Cechlarova & Bettina Klaus & David F.Manlove, 2018. "Pareto optimal matchings of students to courses in the presence of prerequisites," Cahiers de Recherches Economiques du Département d'économie 16.04, Université de Lausanne, Faculté des HEC, Département d’économie.
  • Handle: RePEc:lau:crdeep:16.04

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Monte, Daniel & Tumennasan, Norovsambuu, 2013. "Matching with quorums," Economics Letters, Elsevier, vol. 120(1), pages 14-17.
    2. Eric Budish & Estelle Cantillon, 2012. "The Multi-unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard," American Economic Review, American Economic Association, vol. 102(5), pages 2237-2271, August.
    3. Peter C. Fishburn, 1975. "Axioms for Lexicographic Preferences," Review of Economic Studies, Oxford University Press, vol. 42(3), pages 415-419.
    4. Atila Abdulkadiroglu & Tayfun Sonmez, 1998. "Random Serial Dictatorship and the Core from Random Endowments in House Allocation Problems," Econometrica, Econometric Society, vol. 66(3), pages 689-702, May.
    5. Manea, Mihai, 2007. "Serial dictatorship and Pareto optimality," Games and Economic Behavior, Elsevier, vol. 61(2), pages 316-330, November.
    6. Franz Diebold & Haris Aziz & Martin Bichler & Florian Matthes & Alexander Schneider, 2014. "Course Allocation via Stable Matching," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(2), pages 97-110, April.
    7. Craig Boutilier & Britta Dorn & Nicolas Maudet & Vincent Merlin, 2015. "Computational Social Choice: Theory and Applications," Post-Print halshs-01242312, HAL.
    8. Roth, Alvin E., 1985. "The college admissions problem is not equivalent to the marriage problem," Journal of Economic Theory, Elsevier, vol. 36(2), pages 277-288, August.
    9. Saban, Daniela & Sethuraman, Jay, 2014. "A note on object allocation under lexicographic preferences," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 283-289.
    10. Balinski, Michel & Sonmez, Tayfun, 1999. "A Tale of Two Mechanisms: Student Placement," Journal of Economic Theory, Elsevier, vol. 84(1), pages 73-94, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    many-to-many matching problem; course allocation; additive / lexicographic preferences; polynomial-time algorithm; NP-hardness;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lau:crdeep:16.04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michèle Jaccoud Ramseier). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.