IDEAS home Printed from https://ideas.repec.org/p/jrp/jrpwrp/2013-051.html
   My bibliography  Save this paper

Solving nonlinear stochastic optimal control problems using evolutionary heuristic optimization

Author

Listed:
  • Ivan Savin

    (Faculty of Economics and Business Administration, Friedrich Schiller University Jena, and Chair for Econometrics and Statistics, Graduate School of Economics and Management, Ural Federal University)

  • Dmitri Blueschke

    () (University of Klagenfurt)

Abstract

Policy makers constantly face optimal control problems: what controls allow to achieve certain targets in, e.g., GDP growth or inflation? Conventionally this is done by applying certain linear-quadratic optimization algorithms to dynamic econometric models. Several algorithms extend this baseline framework to nonlinear stochastic problems. However, those algorithms are limited in a variety of ways including, most importantly, restriction to local best solutions only and the symmetry of objective function. In Blueschke et al. (2013a) a new flexible optimization method based on Differential Evolution is suggested. It allows to lift these limitations and achieve better approximations of the policy targets, but is designed to deterministic problems only. This study extends the methodology by dealing with stochastic problems in two different ways: applying extreme event analysis and by minimizing the median objective value. Thus, this research is aimed to broaden the range of decision support information used by policy makers in choosing optimal strategy under much more realistic conditions.

Suggested Citation

  • Ivan Savin & Dmitri Blueschke, 2013. "Solving nonlinear stochastic optimal control problems using evolutionary heuristic optimization," Jena Economic Research Papers 2013-051, Friedrich-Schiller-University Jena.
  • Handle: RePEc:jrp:jrpwrp:2013-051
    as

    Download full text from publisher

    File URL: http://www2.wiwi.uni-jena.de/Papers/jerp2013/wp_2013_051.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lyra, M. & Paha, J. & Paterlini, S. & Winker, P., 2010. "Optimization heuristics for determining internal rating grading scales," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2693-2706, November.
    2. Neck, Reinhard, 1984. "Stochastic control theory and operational research," European Journal of Operational Research, Elsevier, vol. 17(3), pages 283-301, September.
    3. Abiodun Egbetokun & Ivan Savin, 2014. "Absorptive capacity and innovation: when is it better to cooperate?," Journal of Evolutionary Economics, Springer, vol. 24(2), pages 399-420, April.
    4. Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012. "Optimal control of nonlinear dynamic econometric models: An algorithm and an application," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
    5. Blueschke, D. & Blueschke-Nikolaeva, V. & Savin, I., 2013. "New insights into optimal control of nonlinear dynamic econometric models: Application of a heuristic approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 821-837.
    6. Peter Winker & Marianna Lyra & Chris Sharpe, 2011. "Least median of squares estimation by optimization heuristics with an application to the CAPM and a multi-factor model," Computational Management Science, Springer, vol. 8(1), pages 103-123, April.
    7. Benigno, Pierpaolo & Woodford, Michael, 2012. "Linear-quadratic approximation of optimal policy problems," Journal of Economic Theory, Elsevier, vol. 147(1), pages 1-42.
    8. MacRae, Elizabeth Chase, 1975. "An Adaptive Learning Rule for Multiperiod Decision Problems," Econometrica, Econometric Society, vol. 43(5-6), pages 893-906, Sept.-Nov.
    9. D. Blueschke & V. Blueschke-Nikolaeva & R. Neck, 2013. "Stochastic Control of Linear and Nonlinear Econometric Models: Some Computational Aspects," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 107-118, June.
    10. Kendrick, David A., 2005. "Stochastic control for economic models: past, present and the paths ahead," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 3-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herrmann, Johannes & Savin, Ivan, 2015. "Evolution of the electricity market in Germany: Identifying policy implications by an agent-based model," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112959, Verein für Socialpolitik / German Economic Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Savin & Dmitri Blueschke, 2016. "Lost in Translation: Explicitly Solving Nonlinear Stochastic Optimal Control Problems Using the Median Objective Value," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 317-338, August.
    2. D. Blueschke & I. Savin, 2017. "No such thing as a perfect hammer: comparing different objective function specifications for optimal control," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 377-392, June.
    3. Blueschke, D. & Blueschke-Nikolaeva, V. & Savin, I., 2013. "New insights into optimal control of nonlinear dynamic econometric models: Application of a heuristic approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 821-837.
    4. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economic Research Papers 2015-005, Friedrich-Schiller-University Jena.
    5. D. Blueschke & I. Savin & V. Blueschke-Nikolaeva, 2020. "An Evolutionary Approach to Passive Learning in Optimal Control Problems," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 659-673, October.
    6. Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012. "Optimal control of nonlinear dynamic econometric models: An algorithm and an application," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
    7. Savin, Ivan & Egbetokun, Abiodun, 2016. "Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 82-103.
    8. David Kendrick & Hans Amman, 2006. "A Classification System for Economic Stochastic Control Models," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 453-481, June.
    9. repec:use:tkiwps:2020 is not listed on IDEAS
    10. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    11. Marianna Lyra, 2010. "Heuristic Strategies in Finance – An Overview," Working Papers 045, COMISEF.
    12. D. Blueschke & V. Blueschke-Nikolaeva & R. Neck, 2013. "Stochastic Control of Linear and Nonlinear Econometric Models: Some Computational Aspects," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 107-118, June.
    13. Cosimano, Thomas F., 2008. "Optimal experimentation and the perturbation method in the neighborhood of the augmented linear regulator problem," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1857-1894, June.
    14. D.A. Kendrick & H.M. Amman & M.P. Tucci, 2008. "Learning About Learning in Dynamic Economic Models," Working Papers 08-20, Utrecht School of Economics.
    15. Herrmann, Johannes & Savin, Ivan, 2015. "Evolution of the electricity market in Germany: Identifying policy implications by an agent-based model," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112959, Verein für Socialpolitik / German Economic Association.
    16. Benigno, Pierpaolo & Paciello, Luigi, 2014. "Monetary policy, doubts and asset prices," Journal of Monetary Economics, Elsevier, vol. 64(C), pages 85-98.
    17. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    18. Elisabetta Gualandri & Mario Noera, 2014. "Towards A Macroprudential Policy In The Eu: Main Issues," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0049, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    19. Ricardo Nunes & Jinill Kim & Jesper Linde & Davide Debortoli, 2014. "Designing a Simple Loss Function for the Fed: Does the Dual Mandate Make Sense?," 2014 Meeting Papers 1043, Society for Economic Dynamics.
    20. Abdoulaye Millogo, 2020. "Hysteresis Effects and Macroeconomics Gains from Unconventional Monetary Policies Stabilization," Cahiers de recherche 20-12, Departement d'Economique de l'École de gestion à l'Université de Sherbrooke.
    21. Levine, Paul & Pearlman, Joseph & Pierse, Richard, 2008. "Linear-quadratic approximation, external habit and targeting rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3315-3349, October.

    More about this item

    Keywords

    Differential evolution; stochstic problems; nonlinear optimization; optimal control;

    JEL classification:

    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • E63 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Comparative or Joint Analysis of Fiscal and Monetary Policy; Stabilization; Treasury Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2013-051. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Pasche). General contact details of provider: http://www.wiwiss.uni-jena.de/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.