The Parameter Set in an Adaptive Control Monte Carlo Experiment: Some Considerations
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Tucci, Marco P. & Kendrick, David A. & Amman, Hans M., 2010. "The parameter set in an adaptive control Monte Carlo experiment: Some considerations," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1531-1549, September.
- Marco P. Tucci & David A. Kendrick & Hans M. Amman, 2010. "The parameter set in an adaptive control Monte Carlo experiment: Some considerations," Post-Print hal-00732676, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021.
"An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand,"
Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
- Peter John Robinson & W.J.W. Botzen & F. Zhou, 2019. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Working Papers 19-19, Utrecht School of Economics.
- D.A. Kendrick & H.M. Amman & M.P. Tucci, 2008. "Learning About Learning in Dynamic Economic Models," Working Papers 08-20, Utrecht School of Economics.
- Hans M. Amman & Marco P. Tucci, 2020. "How Active is Active Learning: Value Function Method Versus an Approximation Method," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 675-693, October.
- Kwang Mong Sim, 2023. "An Incentive-Compatible and Computationally Efficient Fog Bargaining Mechanism," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1883-1918, December.
- D. Blueschke & V. Blueschke-Nikolaeva & R. Neck, 2013. "Stochastic Control of Linear and Nonlinear Econometric Models: Some Computational Aspects," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 107-118, June.
- Hans M. Amman & Marco Paolo Tucci, 2018. "How active is active learning: value function method vs an approximation method," Department of Economics University of Siena 788, Department of Economics, University of Siena.
- Hans Amman & David Kendrick, 2014.
"Comparison of policy functions from the optimal learning and adaptive control frameworks,"
Computational Management Science, Springer, vol. 11(3), pages 221-235, July.
- D.A. Kendrick & H.M. Amman, 2008. "Comparison of Policy Functions from the Optimal Learning and Adaptive Control Frameworks," Working Papers 08-19, Utrecht School of Economics.
- Amman, Hans M. & Kendrick, David A. & Tucci, Marco P., 2020. "Approximating The Value Function For Optimal Experimentation," Macroeconomic Dynamics, Cambridge University Press, vol. 24(5), pages 1073-1086, July.
- H.M. Amman & D.A. Kendrick, 2012. "Conjectures on the policy function in the presence of optimal experimentation," Working Papers 12-09, Utrecht School of Economics.
- D. Blueschke & I. Savin & V. Blueschke-Nikolaeva, 2020. "An Evolutionary Approach to Passive Learning in Optimal Control Problems," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 659-673, October.
- Ivan Savin & Dmitri Blueschke, 2013. "Solving nonlinear stochastic optimal control problems using evolutionary heuristic optimization," Jena Economics Research Papers 2013-051, Friedrich-Schiller-University Jena.
- Ivan Savin & Dmitri Blueschke, 2016. "Lost in Translation: Explicitly Solving Nonlinear Stochastic Optimal Control Problems Using the Median Objective Value," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 317-338, August.
- Hans M. Amman & Marco P. Tucci, 2017. "The DUAL Approach in an Infinite Horizon Model," Department of Economics University of Siena 766, Department of Economics, University of Siena.
More about this item
Keywords
; ; ; ;JEL classification:
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2007-09-16 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:507. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/usi/wpaper/507.html