IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/507.html

The Parameter Set in an Adaptive Control Monte Carlo Experiment: Some Considerations

Author

Listed:
  • Marco P. Tucci

  • David A. Kendrick

  • Hans M. Amman

Abstract

Comparisons of various methods for solving stochastic control economic models can be done with Monte Carlo methods. These methods have been applied to simple one-state, one-control quadraticlinear tracking models; however, large outliers may occur in a substantial number of the Monte Carlo runs when certain parameter sets are used in these models. This paper tracks the source of these outliers to two sources: (1) the use of a zero for the penalty weights on the control variables and (2) the generation of nearzero initial estimate of the control parameter in the systems equations by the Monte Carlo routine. This result leads to an understanding of why both the unsophisticated Optimal Feedback (Certainty Equivalence) and the sophisticated Dual methods do poorly in some Monte Carlo comparisons relative to the moderately sophisticated Expected Optimal Feedback method.

Suggested Citation

  • Marco P. Tucci & David A. Kendrick & Hans M. Amman, 2007. "The Parameter Set in an Adaptive Control Monte Carlo Experiment: Some Considerations," Department of Economics University of Siena 507, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:507
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/507.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
    2. D.A. Kendrick & H.M. Amman & M.P. Tucci, 2008. "Learning About Learning in Dynamic Economic Models," Working Papers 08-20, Utrecht School of Economics.
    3. Hans M. Amman & Marco P. Tucci, 2020. "How Active is Active Learning: Value Function Method Versus an Approximation Method," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 675-693, October.
    4. Kwang Mong Sim, 2023. "An Incentive-Compatible and Computationally Efficient Fog Bargaining Mechanism," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1883-1918, December.
    5. D. Blueschke & V. Blueschke-Nikolaeva & R. Neck, 2013. "Stochastic Control of Linear and Nonlinear Econometric Models: Some Computational Aspects," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 107-118, June.
    6. Hans M. Amman & Marco Paolo Tucci, 2018. "How active is active learning: value function method vs an approximation method," Department of Economics University of Siena 788, Department of Economics, University of Siena.
    7. Hans Amman & David Kendrick, 2014. "Comparison of policy functions from the optimal learning and adaptive control frameworks," Computational Management Science, Springer, vol. 11(3), pages 221-235, July.
    8. Amman, Hans M. & Kendrick, David A. & Tucci, Marco P., 2020. "Approximating The Value Function For Optimal Experimentation," Macroeconomic Dynamics, Cambridge University Press, vol. 24(5), pages 1073-1086, July.
    9. H.M. Amman & D.A. Kendrick, 2012. "Conjectures on the policy function in the presence of optimal experimentation," Working Papers 12-09, Utrecht School of Economics.
    10. D. Blueschke & I. Savin & V. Blueschke-Nikolaeva, 2020. "An Evolutionary Approach to Passive Learning in Optimal Control Problems," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 659-673, October.
    11. Ivan Savin & Dmitri Blueschke, 2013. "Solving nonlinear stochastic optimal control problems using evolutionary heuristic optimization," Jena Economics Research Papers 2013-051, Friedrich-Schiller-University Jena.
    12. Ivan Savin & Dmitri Blueschke, 2016. "Lost in Translation: Explicitly Solving Nonlinear Stochastic Optimal Control Problems Using the Median Objective Value," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 317-338, August.
    13. Hans M. Amman & Marco P. Tucci, 2017. "The DUAL Approach in an Infinite Horizon Model," Department of Economics University of Siena 766, Department of Economics, University of Siena.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.