IDEAS home Printed from https://ideas.repec.org/p/ivi/wpasec/2005-12.html
   My bibliography  Save this paper

Modelos De Estimacion De La Probabilidad De Negociacion Informada: Una Comparacion Metodologica En El Mercado Español

Author

Listed:
  • David Abad

    () (Universidad de Alicante)

  • Antonio Rubia

    (Universidad de Alicante)

Abstract

Determining the degree of informational asymmetry is a major topic in the literature of modern microstructure. In this paper, we review and analyze the suitability of the models for estimating the probability of informed trading [Easley et al., 1996; Nyholm, 2002, 2003]. The empirical analysis is carried out on the Spanish market. We find evidence suggesting that the regime-switching model by Nyholm (2002, 2003) does not provide estimates consistent with the effects of asymmetry. The specific analysis on the Spanish market reveals a higher likelihood of informed trading for the less-frequently traded assets as a consequence of the dramatic fall in the number of liquidity traders. This issue suggests a strong degree of aversion to the risk of adverse selection. Caracterizar el grado de asimetría informativa ocupa un papel predominante en la literatura de microestructura moderna. En este trabajo, se revisa y analiza la idoneidad de los métodos existentes para calibrar la probabilidad de negociación informada [Easley et al., 1996; Nyholm, 2002, 2003]. El análisis empírico toma como referencia el mercado español. La evidencia obtenida señala que el modelo de régimen cambiante de Nyholm (2002, 2003) no ofrece medidas consistentes con los efectos de asimetría informativa. El análisis sobre el mercado español revela una mayor probabilidad de negociación informada en los activos menos líquidos como consecuencia de una reducción drástica en el número de agentes que negocia por motivos de liquidez. Esta evidencia sugiere un fuerte comportamiento de aversión al riesgo de selección adversa.

Suggested Citation

  • David Abad & Antonio Rubia, 2005. "Modelos De Estimacion De La Probabilidad De Negociacion Informada: Una Comparacion Metodologica En El Mercado Español," Working Papers. Serie EC 2005-12, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  • Handle: RePEc:ivi:wpasec:2005-12
    as

    Download full text from publisher

    File URL: http://www.ivie.es/downloads/docs/wpasec/wpasec-2005-12.pdf
    File Function: Fisrt version / Primera version, 2005
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. David Easley & Soeren Hvidkjaer & Maureen O'Hara, 2002. "Is Information Risk a Determinant of Asset Returns?," Journal of Finance, American Finance Association, vol. 57(5), pages 2185-2221, October.
    3. Madhavan, Ananth & Smidt, Seymour, 1991. "A Bayesian model of intraday specialist pricing," Journal of Financial Economics, Elsevier, vol. 30(1), pages 99-134, November.
    4. Hasbrouck, Joel, 1991. "The Summary Informativeness of Stock Trades: An Econometric Analysis," Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 571-595.
    5. Kee H. Chung & Mingsheng Li, 2003. "Adverse-Selection Costs and the Probability of Information-Based Trading," The Financial Review, Eastern Finance Association, vol. 38(2), pages 257-272, May.
    6. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    7. Ken Nyholm, 2002. "Estimating the Probability of Informed Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(4), pages 485-505.
    8. Theissen, Erik, 2000. "Market structure, informational efficiency and liquidity: An experimental comparison of auction and dealer markets," Journal of Financial Markets, Elsevier, vol. 3(4), pages 333-363, November.
    9. Easley, David & O'Hara, Maureen & Paperman, Joseph, 1998. "Financial analysts and information-based trade," Journal of Financial Markets, Elsevier, vol. 1(2), pages 175-201, August.
    10. Stoll, Hans R, 1989. " Inferring the Components of the Bid-Ask Spread: Theory and Empirical Tests," Journal of Finance, American Finance Association, vol. 44(1), pages 115-134, March.
    11. Theissen, Erik, 2001. "A test of the accuracy of the Lee/Ready trade classification algorithm," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 11(2), pages 147-165, June.
    12. Grammig, Joachim & Schiereck, Dirk & Theissen, Erik, 2001. "Knowing me, knowing you: : Trader anonymity and informed trading in parallel markets," Journal of Financial Markets, Elsevier, vol. 4(4), pages 385-412, October.
    13. David Abad & Antonio Rubia, 2004. "Estimating The Probability Of Informed Trading: Further Evidence From An Order-Driven Market," Working Papers. Serie AD 2004-38, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    14. Huang, Roger D & Stoll, Hans R, 1994. "Market Microstructure and Stock Return Predictions," Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 179-213.
    15. Copeland, Thomas E & Galai, Dan, 1983. " Information Effects on the Bid-Ask Spread," Journal of Finance, American Finance Association, vol. 38(5), pages 1457-1469, December.
    16. Easley, David & O'Hara, Maureen & Saar, Gideon, 2001. "How Stock Splits Affect Trading: A Microstructure Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(01), pages 25-51, March.
    17. George, Thomas J & Kaul, Gautam & Nimalendran, M, 1991. "Estimation of the Bid-Ask Spread and Its Components: A New Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 623-656.
    18. David Easley & Maureen O'Hara & P.S. Srinivas, 1998. "Option Volume and Stock Prices: Evidence on Where Informed Traders Trade," Journal of Finance, American Finance Association, vol. 53(2), pages 431-465, April.
    19. Lin, Ji-Chai & Sanger, Gary C & Booth, G Geoffrey, 1995. "Trade Size and Components of the Bid-Ask Spread," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1153-1183.
    20. S. Baranzoni & P. Bianchi & L. Lambertini, 2000. "Multiproduct Firms, Product Differentiation, and Market Structure," Working Papers 368, Dipartimento Scienze Economiche, Universita' di Bologna.
    21. Madhavan, Ananth, 1992. " Trading Mechanisms in Securities Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 607-641, June.
    22. Ken Nyholm, 2003. "Inferring the private information content of trades: a regime-switching approach The views presented in the paper are not necessarily shared by the European Central Bank," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 457-470.
    23. Choi, J. Y. & Salandro, Dan & Shastri, Kuldeep, 1988. "On the Estimation of Bid-Ask Spreads: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(02), pages 219-230, June.
    24. Viswanathan, S. & Wang, James J. D., 2002. "Market architecture: limit-order books versus dealership markets," Journal of Financial Markets, Elsevier, vol. 5(2), pages 127-167, April.
    25. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    26. Easley, David & Kiefer, Nicholas M & O'Hara, Maureen, 1997. "One Day in the Life of a Very Common Stock," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 805-835.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Información asimétrica; selección adversa; probabilidad de negociación informada; PIN Asymmetric information; adverse selection; probability of informed trading; PIN;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ivi:wpasec:2005-12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Departamento de Edición). General contact details of provider: http://edirc.repec.org/data/ievages.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.