IDEAS home Printed from
   My bibliography  Save this paper

On downside risk predictability through liquidity and trading activity: a quantile regression approach


  • Lidia Sanchis-Marco

    () (Dpto. Análisis Económico y Finanzas)

  • Antonio Rubia Serrano

    (Universidad de Alicante)


Most downside risk models implicitly assume that returns are a sufficient statistic with which to forecast the daily conditional distribution of a portfolio. In this paper, we address this question empirically and analyze if the variables that proxy for market liquidity and trading conditions convey valid information to forecast the quantiles of the conditional distribution of several representative market portfolios. Using quantile regression techniques, we report evidence of predictability that can be exploited to improve Value at Risk forecasts. Including trading- and spread-related variables improves considerably the forecasting performance.

Suggested Citation

  • Lidia Sanchis-Marco & Antonio Rubia Serrano, 2011. "On downside risk predictability through liquidity and trading activity: a quantile regression approach," Working Papers. Serie AD 2011-14, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  • Handle: RePEc:ivi:wpasad:2011-14

    Download full text from publisher

    File URL:
    File Function: Fisrt version / Primera version, 2011
    Download Restriction: no

    References listed on IDEAS

    1. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 0075, European Central Bank.
    2. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    3. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
    4. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    5. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    6. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    7. George Kouretas & Leonidas Zarangas, 2005. "Conditional autoregressive valu at risk by regression quantile: Estimatingmarket risk for major stock markets," Working Papers 0521, University of Crete, Department of Economics.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Stoll, Hans R, 1989. " Inferring the Components of the Bid-Ask Spread: Theory and Empirical Tests," Journal of Finance, American Finance Association, vol. 44(1), pages 115-134, March.
    10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Value at Risk; Basel; Liquidity; Trading Activity.;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ivi:wpasad:2011-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Departamento de Edición). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.