IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/200901010800001391.html
   My bibliography  Save this paper

Development of Open Source Software for Power Market Research: The AMES Test Bed

Author

Listed:
  • Li, Hongyan
  • Tesfatsion, Leigh

Abstract

Open source software (OSS) expresses the idea that developers should be able to license the publication of their software in a manner permitting anyone to freely use, modify and distribute the software. Today OSS is widely used in the software industry: for example, for language development tools (eg, NetBeans for Java), office document processors (eg, OpenOffice) and operating systems (eg, Linux, OpenSolaris).Yet OSS has been slow to penetrate the power industry; heavy reliance is still placed on closed-source commercial software packages. Open source software tends to be used for specialized purposes (eg, circuit design) rather than for the general-purpose analysis of power systems. This study discusses the potential benefits and drawbacks of developing OSS for power market research, using the AMES Wholesale Power Market Test Bed for concrete illustration.

Suggested Citation

  • Li, Hongyan & Tesfatsion, Leigh, 2009. "Development of Open Source Software for Power Market Research: The AMES Test Bed," ISU General Staff Papers 200901010800001391, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:200901010800001391
    as

    Download full text from publisher

    File URL: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1391&context=econ_las_pubs
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    2. Silva, Francisco & Teixeira, Brígida & Pinto, Tiago & Santos, Gabriel & Vale, Zita & Praça, Isabel, 2016. "Generation of realistic scenarios for multi-agent simulation of electricity markets," Energy, Elsevier, vol. 116(P1), pages 128-139.
    3. Ricardo Faia & Tiago Pinto & Zita Vale & Juan Manuel Corchado, 2017. "An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios," Energies, MDPI, vol. 10(7), pages 1-18, June.
    4. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    5. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    6. Krishnamurthy, Dheepak & Li, Wanning & Tesfatsion, Leigh, 2016. "An 8-Zone Test System Based on ISO New England Data: Development and Application," ISU General Staff Papers 201601010800001449, Iowa State University, Department of Economics.
    7. Tadahiro Taniguchi & Koki Kawasaki & Yoshiro Fukui & Tomohiro Takata & Shiro Yano, 2015. "Automated Linear Function Submission-Based Double Auction as Bottom-up Real-Time Pricing in a Regional Prosumers’ Electricity Network," Energies, MDPI, vol. 8(7), pages 1-26, July.
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Voudouris, Vlasios & Stasinopoulos, Dimitrios & Rigby, Robert & Di Maio, Carlo, 2011. "The ACEGES laboratory for energy policy: Exploring the production of crude oil," Energy Policy, Elsevier, vol. 39(9), pages 5480-5489, September.
    10. Gabriel Santos & Tiago Pinto & Isabel Praça & Zita Vale, 2016. "An Interoperable Approach for Energy Systems Simulation: Electricity Market Participation Ontologies," Energies, MDPI, vol. 9(11), pages 1-22, October.
    11. Ge, Jiaqi, 2014. "Stepping into new territory: Three essays on agent-based computational economics and environmental economics," ISU General Staff Papers 201401010800004899, Iowa State University, Department of Economics.
    12. Zheng Ma & Mette Jessen Schultz & Kristoffer Christensen & Magnus Værbak & Yves Demazeau & Bo Nørregaard Jørgensen, 2019. "The Application of Ontologies in Multi-Agent Systems in the Energy Sector: A Scoping Review," Energies, MDPI, vol. 12(16), pages 1-31, August.
    13. Pinto, Tiago & Vale, Zita & Sousa, Tiago M. & Praça, Isabel, 2015. "Negotiation context analysis in electricity markets," Energy, Elsevier, vol. 85(C), pages 78-93.
    14. Santos, Gabriel & Pinto, Tiago & Praça, Isabel & Vale, Zita, 2016. "MASCEM: Optimizing the performance of a multi-agent system," Energy, Elsevier, vol. 111(C), pages 513-524.
    15. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.

    More about this item

    JEL classification:

    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D6 - Microeconomics - - Welfare Economics
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L2 - Industrial Organization - - Firm Objectives, Organization, and Behavior
    • L3 - Industrial Organization - - Nonprofit Organizations and Public Enterprise
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:200901010800001391. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.