IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p883-d103217.html
   My bibliography  Save this article

An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios

Author

Listed:
  • Ricardo Faia

    (Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development (GECAD), Institute of Engineering, Polytechnic of Porto (ISEP/IPP), Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

  • Tiago Pinto

    (Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development (GECAD), Institute of Engineering, Polytechnic of Porto (ISEP/IPP), Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
    Bioinformatics, Intelligent Systems and Educational Technology (BISITE) Research Centre, University of Salamanca, Calle Espejo, s/n, 37007 Salamanca, Spain)

  • Zita Vale

    (Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development (GECAD), Institute of Engineering, Polytechnic of Porto (ISEP/IPP), Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

  • Juan Manuel Corchado

    (Bioinformatics, Intelligent Systems and Educational Technology (BISITE) Research Centre, University of Salamanca, Calle Espejo, s/n, 37007 Salamanca, Spain)

Abstract

The deregulation of the electricity sector has culminated in the introduction of competitive markets. In addition, the emergence of new forms of electric energy production, namely the production of renewable energy, has brought additional changes in electricity market operation. Renewable energy has significant advantages, but at the cost of an intermittent character. The generation variability adds new challenges for negotiating players, as they have to deal with a new level of uncertainty. In order to assist players in their decisions, decision support tools enabling assisting players in their negotiations are crucial. Artificial intelligence techniques play an important role in this decision support, as they can provide valuable results in rather small execution times, namely regarding the problem of optimizing the electricity markets participation portfolio. This paper proposes a heuristic method that provides an initial solution that allows metaheuristic techniques to improve their results through a good initialization of the optimization process. Results show that by using the proposed heuristic, multiple metaheuristic optimization methods are able to improve their solutions in a faster execution time, thus providing a valuable contribution for players support in energy markets negotiations.

Suggested Citation

  • Ricardo Faia & Tiago Pinto & Zita Vale & Juan Manuel Corchado, 2017. "An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios," Energies, MDPI, vol. 10(7), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:883-:d:103217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sioshansi, Fereidoon P., 2008. "Competitive Electricity Markets: Questions Remain about Design, Implementation, Performance," The Electricity Journal, Elsevier, vol. 21(2), pages 74-87, March.
    2. Bar-Lev, Dan & Katz, Steven, 1976. "A Portfolio Approach to Fossil Fuel Procurement in the Electric Utility Industry," Journal of Finance, American Finance Association, vol. 31(3), pages 933-947, June.
    3. Coelho, Leandro dos Santos, 2008. "A quantum particle swarm optimizer with chaotic mutation operator," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1409-1418.
    4. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    5. Li, Hongyan & Tesfatsion, Leigh, 2009. "Development of Open Source Software for Power Market Research: The AMES Test Bed," ISU General Staff Papers 200901010800001391, Iowa State University, Department of Economics.
    6. Hongyan Li & Leigh Tesfatsion, . "Development of open source software for power market research: the AMES test bed," Journal of Energy Markets, Journal of Energy Markets.
    7. Boris Krey & Peter Zweifel, 2006. "Efficient Electricity Portfolios for Switzerland and the United States," SOI - Working Papers 0602, Socioeconomic Institute - University of Zurich.
    8. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Pinto & Zita Vale & Isabel Praça & E. J. Solteiro Pires & Fernando Lopes, 2015. "Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning," Energies, MDPI, vol. 8(9), pages 1-26, September.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
    4. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    5. Krishnamurthy, Dheepak & Li, Wanning & Tesfatsion, Leigh, 2016. "An 8-Zone Test System Based on ISO New England Data: Development and Application," ISU General Staff Papers 201601010800001449, Iowa State University, Department of Economics.
    6. Tadahiro Taniguchi & Koki Kawasaki & Yoshiro Fukui & Tomohiro Takata & Shiro Yano, 2015. "Automated Linear Function Submission-Based Double Auction as Bottom-up Real-Time Pricing in a Regional Prosumers’ Electricity Network," Energies, MDPI, vol. 8(7), pages 1-26, July.
    7. repec:ers:journl:v:xv:y:2012:i:sie:p:3-30 is not listed on IDEAS
    8. Ruangpattana, Suriya & Preckel, Paul V. & Gotham, Douglas J. & Muthuraman, Kumar & Velástegui, Marco & Morin, Thomas L. & Uhan, Nelson A., 2012. "Diversification of fuel costs accounting for load variation," Energy Policy, Elsevier, vol. 42(C), pages 400-408.
    9. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    10. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    11. Madlener, Reinhard & Glensk, Barbara & Weber, Veronika, 2011. "Fuzzy Portfolio Optimization of Onshore Wind Power Plants," FCN Working Papers 10/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2014.
    12. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    13. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    14. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    15. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    16. Hugo Algarvio & António Couto & Ana Estanqueiro, 2024. "RES.Trade: An Open-Access Simulator to Assess the Impact of Different Designs on Balancing Electricity Markets," Energies, MDPI, vol. 17(24), pages 1-18, December.
    17. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    18. Pinto, Tiago & Vale, Zita & Sousa, Tiago M. & Praça, Isabel, 2015. "Negotiation context analysis in electricity markets," Energy, Elsevier, vol. 85(C), pages 78-93.
    19. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    20. Santos, Gabriel & Pinto, Tiago & Praça, Isabel & Vale, Zita, 2016. "MASCEM: Optimizing the performance of a multi-agent system," Energy, Elsevier, vol. 111(C), pages 513-524.
    21. Madlener, Reinhard & Wenk, Christioph, 2008. "Efficient Investment Portfolios for the Swiss Electricity Supply Sector," FCN Working Papers 2/2008, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    22. Yusuf Izmirlioglu & Loc Pham & Tran Cao Son & Enrico Pontelli, 2024. "A Survey of Multi-Agent Systems for Smartgrids," Energies, MDPI, vol. 17(15), pages 1-62, July.
    23. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:883-:d:103217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.