IDEAS home Printed from
   My bibliography  Save this paper

Inference for Inverse Stochastic Dominance


  • Francesco Andreoli

    () (THEMA University of Cergy-Pontoise and University of Verona)


This note presents an innovative inference procedure for assessing if a pair of distributions can be ordered according to inverse stochastic dominance (ISD). At order 1 and 2, ISD coincides respectively with rank and generalized Lorenz dominance and it selects the preferred distribution by all social evaluation functions that are monotonic and display inequality aversion. At orders higher than the second, ISD is associated with dominance for classes of linear rank dependent evaluation functions. This paper focuses on the class of conditional single parameters Gini social evaluation functions and illustrates that these functions can be linearly decomposed into their empirically tractable influence functions. This approach gives estimators for ISD that are asymptotically normal with a variancecovariance structure which is robust to non-simple randomization sampling schemes, a common case in many surveys used in applied distribution analysis. One of these surveys, the French Labor Force Survey, is selected to test the robustness of Equality of Opportunity evaluations in France through ISD comparisons at order 3. The ISD tests proposed in this paper are operationalized through the user-written “isdtest” Stata routine.

Suggested Citation

  • Francesco Andreoli, 2013. "Inference for Inverse Stochastic Dominance," Working Papers 295, ECINEQ, Society for the Study of Economic Inequality.
  • Handle: RePEc:inq:inqwps:ecineq2013-295

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Valentino Dardanoni & Antonio Forcina, 1999. "Inference for Lorenz curve orderings," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 49-75.
    3. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    4. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
    5. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    6. Claudio Zoli, 1999. "Intersecting generalized Lorenz curves and the Gini index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 183-196.
    7. Donaldson, David & Weymark, John A., 1983. "Ethically flexible gini indices for income distributions in the continuum," Journal of Economic Theory, Elsevier, vol. 29(2), pages 353-358, April.
    8. Fleurbaey, Marc, 2012. "Fairness, Responsibility, and Welfare," OUP Catalogue, Oxford University Press, number 9780199653591.
    9. Fishburn, Peter C., 1976. "Continua of stochastic dominance relations for bounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 295-311, December.
    10. Lefranc, Arnaud & Pistolesi, Nicolas & Trannoy, Alain, 2009. "Equality of opportunity and luck: Definitions and testable conditions, with an application to income in France," Journal of Public Economics, Elsevier, vol. 93(11-12), pages 1189-1207, December.
    11. Rolf Aaberge, 2007. "Gini’s nuclear family," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 305-322, December.
    12. Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 77(1), pages 119-161, December.
    13. Buhong Zheng, 2002. "Testing Lorenz Curves with Non-Simple Random Samples," Econometrica, Econometric Society, vol. 70(3), pages 1235-1243, May.
    14. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    15. Rolf Aaberge, 2005. "Asymptotic Distribution Theory of Empirical Rank-dependent Measures of Inequality," Discussion Papers 402, Statistics Norway, Research Department.
    16. Davies, James & Hoy, Michael, 1995. "Making Inequality Comparisons When Lorenz Curves Intersect," American Economic Review, American Economic Association, vol. 85(4), pages 980-986, September.
    17. Barrett, Garry F. & Donald, Stephen G., 2009. "Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 1-17.
    18. Buhong Zheng, 1999. "Statistical Inferences for Testing Marginal Rank and (Generalized) Lorenz Dominances," Southern Economic Journal, Southern Economic Association, vol. 65(3), pages 557-570, January.
    19. Shorrocks, Anthony F, 1983. "Ranking Income Distributions," Economica, London School of Economics and Political Science, vol. 50(197), pages 3-17, February.
    20. Fabio Maccheroni & Pietro Muliere & Claudio Zoli, 2005. "Inverse stochastic orders and generalized Gini functionals," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 529-559.
    21. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    22. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," Review of Economic Studies, Oxford University Press, vol. 50(4), pages 723-735.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Francesco Andreoli & Arnaud Lefranc, 2013. "Equalization of opportunity: Definitions and implementable conditions," Working Papers 310, ECINEQ, Society for the Study of Economic Inequality.
    2. Andreoli, Francesco & Havnes, Tarjei & Lefranc, Arnaud, 2014. "Equalization of Opportunity: Definitions, Implementable Conditions and Application to Early-Childhood Policy Evaluation," IZA Discussion Papers 8503, Institute for the Study of Labor (IZA).

    More about this item


    Inverse stochastic dominance; inference; influence functions; inequality.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inq:inqwps:ecineq2013-295. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maria Ana Lugo). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.