IDEAS home Printed from https://ideas.repec.org/p/ing/wpaper/201406.html
   My bibliography  Save this paper

Examiner amendments to applications to the european patent office: Procedures, knowledge bases and country specificities

Author

Listed:
  • Azagra-Caro,Joaquín M.
  • Tur,Elena M.

Abstract

The geography of knowledge flows has shown that the probability of a patent applicant rather than the examiner originating a citation depends on differences between citing and cited countries. How the characteristics of the citing country affect that probability has received less attention. Using European Patent Office (EPO) data of over 3,500,000 citations (1997-2007), we find that the probability of applicant citation is higher as national economic and scientific strengths increase, if applicants and examiners come from the same country and if the country belongs to EPO. This âcountry clubâ effect is comparable to that found for US Patent and Trademark Office.

Suggested Citation

  • Azagra-Caro,Joaquín M. & Tur,Elena M., 2014. "Examiner amendments to applications to the european patent office: Procedures, knowledge bases and country specificities," INGENIO (CSIC-UPV) Working Paper Series 201406, INGENIO (CSIC-UPV), revised 29 Nov 2018.
  • Handle: RePEc:ing:wpaper:201406
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. de Saint-Georges, Matthis & van Pottelsberghe de la Potterie, Bruno, 2013. "A quality index for patent systems," Research Policy, Elsevier, vol. 42(3), pages 704-719.
    3. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    4. Manuel Acosta & Daniel Coronado & Rosario Marín & Pedro Prats, 2013. "Factors affecting the diffusion of patented military technology in the field of weapons and ammunition," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 1-22, January.
    5. Joaquín M. Azagra‐Caro & Pauline Mattsson & François Perruchas, 2011. "Smoothing the lies: The distinctive effects of patent characteristics on examiner and applicant citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1727-1740, September.
    6. Lawson Cornelia & Sterzi Valerio, 2012. "The role of early career factors in academic patenting," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201201, University of Turin.
    7. Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
    8. Joaquín M. Azagra-Caro & Ignacio Fernández-de-Lucio & François Perruchas & Pauline Mattsson, 2009. "What do patent examiner inserted citations indicate for a region with low absorptive capacity?," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(2), pages 441-455, August.
    9. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    10. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    11. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    12. Peter Thompson, 2006. "Patent Citations and the Geography of Knowledge Spillovers: Evidence from Inventor- and Examiner-added Citations," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 383-388, May.
    13. Furman, Jeffrey L. & Porter, Michael E. & Stern, Scott, 2002. "The determinants of national innovative capacity," Research Policy, Elsevier, vol. 31(6), pages 899-933, August.
    14. Cotropia, Christopher A. & Lemley, Mark A. & Sampat, Bhaven, 2013. "Do applicant patent citations matter?," Research Policy, Elsevier, vol. 42(4), pages 844-854.
    15. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    16. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    17. Mark A. Lemley & Bhaven Sampat, 2012. "Examiner Characteristics and Patent Office Outcomes," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 817-827, August.
    18. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    19. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    20. Collins, Peter & Wyatt, Suzanne, 1988. "Citations in patents to the basic research literature," Research Policy, Elsevier, vol. 17(2), pages 65-74, April.
    21. Cornelia Lawson & Valerio Sterzi, 2014. "The role of early-career factors in the formation of serial academic inventors," Science and Public Policy, Oxford University Press, vol. 41(4), pages 464-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joaquín M. Azagra-Caro & Elena M. Tur, 2018. "Examiner trust in applicants to the European Patent Office: country specificities," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1319-1348, December.
    2. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    3. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    4. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    5. Joaquín M. Azagra-Caro, 2012. "Access to universities’ public knowledge: who’s more nationalist?," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
    6. Barirani, Ahmad & Beaudry, Catherine & Agard, Bruno, 2017. "Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 271-283.
    7. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    8. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    9. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    10. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
    11. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    12. Azagra-Caro,Joaquín M. & Barberá-Tomás,David & Edwards-Schachter,Mónica, 2015. "The impact of one of the most highly cited university patents: formalisation and localization," INGENIO (CSIC-UPV) Working Paper Series 201502, INGENIO (CSIC-UPV), revised 03 Jan 2017.
    13. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    14. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.
    15. Font-Julián, Cristina I & Ontalba-Ruipérez, José-Antonio & Orduña-Malea, Enrique & Thelwall, Mike, 2022. "Which types of online resource support US patent claims?," Journal of Informetrics, Elsevier, vol. 16(1).
    16. WADA Tetsuo, 2015. "Cognitive Distances in Prior Art Search by the Triadic Patent Offices: Empirical evidence from international search reports," Discussion papers 15096, Research Institute of Economy, Trade and Industry (RIETI).
    17. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
    18. Dominik Heinisch & Önder Nomaler & Guido Buenstorf & Koen Frenken & Harry Lintsen, 2016. "Same place, same knowledge -- same people? The geography of non-patent citations in Dutch polymer patents," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 25(6), pages 553-572, September.
    19. Sun, Zhen & Wright, Brian D., 2022. "Citations backward and forward: Insights into the patent examiner's role," Research Policy, Elsevier, vol. 51(7).
    20. Tetsuo Wada, 2016. "Obstacles to prior art searching by the trilateral patent offices: empirical evidence from International Search Reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 701-722, May.

    More about this item

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ing:wpaper:201406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ester Planells (email available below). General contact details of provider: https://edirc.repec.org/data/ingenes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.