IDEAS home Printed from
   My bibliography  Save this paper

Optimal significance tests in simultaneous equation models


  • Theodore W Anderson

    (Institute for Fiscal Studies and Stanford)


Consider testing the null hypothesis that a single structural equation has specified coefficients. The alternative hypothesis is that the relevant part of the reduced form matrix has proper rank, that is, that the equation is identified. The usual linear model with normal disturbances is invariant with respect to linear transformations of the endogenous and of the exogenous variables. When the disturbance covariance matrix is known, it can be set to the identity, and the invariance of the endogenous variables is with respect to orthogonal transformations. The likelihood ratio test is invariant with respect to these transformations and is the best invariant test. Furthermore it is admissible in the class of all tests. Any other test has lower power and/or higher significance level.

Suggested Citation

  • Theodore W Anderson, 2010. "Optimal significance tests in simultaneous equation models," CeMMAP working papers CWP18/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:18/10

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:18/10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.