IDEAS home Printed from https://ideas.repec.org/p/iae/iaewps/wp2008n16.html
   My bibliography  Save this paper

A Bayesian Simulation Approach to Inference on a Multi-State Latent Factor Intensity Model

Author

Listed:
  • Chew Lian Chua

    (Melbourne Institute of Applied Economic and Social Research, The University of Melbourne)

  • G. C. Lim

    () (Melbourne Institute of Applied Economic and Social Research, The University of Melbourne)

  • Penelope Smith

    (Westpac Banking Corporation, Sydney)

Abstract

This paper provides a Bayesian approach to inference on a multi-state latent factor intensity model to manage the problem of highly analytically intractable pdfs. The sampling algorithm used to obtain posterior distributions of the model parameters includes a particle filter step and a Metropolis-Hastings step within a Gibbs sampler. A simulated example is conducted to show the feasibility and accuracy of this sampling algorithm. The approach is applied to the case of credit ratings transition matrices.

Suggested Citation

  • Chew Lian Chua & G. C. Lim & Penelope Smith, 2008. "A Bayesian Simulation Approach to Inference on a Multi-State Latent Factor Intensity Model," Melbourne Institute Working Paper Series wp2008n16, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
  • Handle: RePEc:iae:iaewps:wp2008n16
    as

    Download full text from publisher

    File URL: http://melbourneinstitute.unimelb.edu.au/downloads/working_paper_series/wp2008n16.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    2. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    3. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    4. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    5. Hu, Yen-Ting & Kiesel, Rudiger & Perraudin, William, 2002. "The estimation of transition matrices for sovereign credit ratings," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1383-1406, July.
    6. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    7. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    8. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    9. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    10. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iae:iaewps:wp2008n16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Abbey Treloar). General contact details of provider: http://edirc.repec.org/data/mimelau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.