IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2012-012.html
   My bibliography  Save this paper

Confidence sets in nonparametric calibration of exponential Lévy models

Author

Listed:
  • Jakob Söhl

Abstract

Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. This is done by showing joint asymptotic normality for the estimation of the volatility, the drift, the intensity and the Lévy density at nitely many points in the spectral calibration method. Furthermore, the asymptotic normality result leads to a test on the value of the volatility in exponential Lévy models.

Suggested Citation

  • Jakob Söhl, 2012. "Confidence sets in nonparametric calibration of exponential Lévy models," SFB 649 Discussion Papers SFB649DP2012-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2012-012
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-012.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Denis Belomestny, 2009. "Spectral estimation of the fractional order of a Lévy process," SFB 649 Discussion Papers SFB649DP2009-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    3. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    European option; Jump diffusion; Confidence sets; Asymptotic normality; Nonlinear inverse problem;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2012-012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.