IDEAS home Printed from
   My bibliography  Save this paper

Going beyond the detection of differential item functioning in tests for personnel selection


  • Meulders, Michel

    () (Hogeschool-Universiteit Brussel (HUB), Belgium)

  • De Boeck, Paul

    (Katholieke Universiteit Leuven)

  • Vandenberk, Miek

    (Katholieke Universiteit Leuven)


Differential item functioning (DIF) occurs when persons with equal ability who belong to different groups have a different probability to correctly solve an item of a certain test. As the occurrence of DIF is considered a serious problem when using tests for personnel selection, many procedures have been developed for detecting DIF. However, models for explaining DIF in a systematic manner have received only little attention. This paper discusses a further extension of item response theory based models that provides a strong substantive basis for explaining DIF. The general idea is to model item difficulties in each group as a function of item features such as the cognitive processes that are needed for correctly solving items. A different weight for a particular feature across groups also called differential feature functioning then provides a strong substantive basis for explaining why DIF may occur in items that share this particular feature. Differential feature functioning can be used for estimating the average difference between feature weights across groups. Another useful model extension is to consider feature weights that are random over persons. Models with random feature weights allow to assess the extent to which feature weights tend to differ between groups as well as within groups. As an illustration of the approach, the proposed models will be used for modeling DIF in a test for transitive reasoning using data from personnel selection.

Suggested Citation

  • Meulders, Michel & De Boeck, Paul & Vandenberk, Miek, 2009. "Going beyond the detection of differential item functioning in tests for personnel selection," Working Papers 2009/40, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  • Handle: RePEc:hub:wpecon:200940

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    2. Nambury Raju, 1988. "The area between two item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 495-502, December.
    3. Henk Kelderman, 1989. "Item bias detection using loglinear irt," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 681-697, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hub:wpecon:200940. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sabine Janssens). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.