IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2014_041.html
   My bibliography  Save this paper

Language, News and Volatility

Author

Listed:

Abstract

I use Google News TM to study the relation between news volumes and stock market volatilities. More than nine million stock market-related news stories in English and (Mandarin) Chinese are collected and the dynamics of the news volume and the stock market volatility is compared in both the Anglophone world and the Sinophone world. I find that the stock market volatility and the number of publicly available global news stories are strongly linked to each other in both languages. Contemporaneous correlations between news and volatility are positive and highly significant, and regressions tell us that the directional link between news and volatility rather is from news to volatility than vice versa. In out-of-sample evaluations of volatility forecasts I find news volumes to improve forecasts, regardless of language. The relationship between news and volatility is weakest in mainland China and a possible reason for this is that Chinese retail investors do not read (traditional) news, neither in Chinese nor in English. The results suggest that news could be used in volatility-related financial applications such as GARCH-models or VIX-like fear indexes.

Suggested Citation

  • Byström, Hans, 2014. "Language, News and Volatility," Working Papers 2014:41, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2014_041
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/papers/wp14_41.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berry, Thomas D & Howe, Keith M, 1994. "Public Information Arrival," Journal of Finance, American Finance Association, vol. 49(4), pages 1331-1346, September.
    2. Poon, Winnie P. H. & Fung, Hung-Gay, 2000. "Red chips or H shares: which China-backed securities process information the fastest?," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 315-343, December.
    3. Su, Dongwei & Fleisher, Belton M., 1999. "Why does return volatility differ in Chinese stock markets?," Pacific-Basin Finance Journal, Elsevier, vol. 7(5), pages 557-586, December.
    4. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    5. Ederington, Louis H & Lee, Jae Ha, 1993. "How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    6. Hans Byström, 2009. "News aggregators, volatility and the stock market," Economics Bulletin, AccessEcon, vol. 29(4), pages 2673-2682.
    7. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    10. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    11. Jian Yang, 2003. "Market Segmentation and Information Asymmetry in Chinese Stock Markets: A VAR Analysis," The Financial Review, Eastern Finance Association, vol. 38(4), pages 591-609, November.
    12. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Guidolin & Manuela Pedio, 2020. "Media Attention vs. Sentiment as Drivers of Conditional Volatility Predictions: An Application to Brexit," BAFFI CAREFIN Working Papers 20145, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    2. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    3. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    4. Moussa, Faten & Delhoumi, Ezzeddine & Ouda, Olfa Ben, 2017. "Stock return and volatility reactions to information demand and supply," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 54-67.
    5. DeGennaro, Ramon P. & Shrieves, Ronald E., 1997. "Public information releases, private information arrival and volatility in the foreign exchange market," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 295-315, December.
    6. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    7. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
    8. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, Open Access Journal, vol. 5(3), pages 1-46, August.
    9. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Modelling S&P 100 volatility: The information content of stock returns," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1665-1679, September.
    10. Soultanaeva, Albina, 2008. "Impact of Political News on the Baltic State Stock Markets," Umeå Economic Studies 735, Umeå University, Department of Economics.
    11. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    12. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    13. Semen Son-Turan, 2016. "The Impact of Investor Sentiment on the "Leverage Effect"," International Econometric Review (IER), Econometric Research Association, vol. 8(1), pages 4-18, April.
    14. Nikkinen, Jussi & Rothovius, Timo, 2019. "The EIA WPSR release, OVX and crude oil internet interest," Energy, Elsevier, vol. 166(C), pages 131-141.
    15. Thomas Dimpfl & Vladislav Kleiman, 2019. "Investor Pessimism and the German Stock Market: Exploring Google Search Queries," German Economic Review, Verein für Socialpolitik, vol. 20(1), pages 1-28, February.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Michael J. Fleming & Eli M. Remolona, 1996. "Price formation and liquidity in the U.S. treasuries market: evidence from intraday patterns around announcements," Research Paper 9633, Federal Reserve Bank of New York.
    18. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
    19. Ding, Rong & Hou, Wenxuan & Liu, Yue (Lucy) & Zhang, John Ziyang, 2018. "Media censorship and stock price: Evidence from the foreign share discount in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 112-133.
    20. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Ribeiro-Soriano, Domingo, 2020. "Does investor attention influence water companies’ stock returns?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).

    More about this item

    Keywords

    news aggregator; news; language; volatility; stock market; Chinese; Mandarin; GARCH; VIX;
    All these keywords.

    JEL classification:

    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2014_041. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.