IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01404752.html

Conditional Mean-Variance and Mean-Semivariance models in portfolio optimization

Author

Listed:
  • Hanene Ben Salah

    (Laboratoire BESTMOD ISG Tunis - ISG Tunis, IMAG - Institut Montpelliérain Alexander Grothendieck - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique, LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Ali Gannoun

    (IMAG - Institut Montpelliérain Alexander Grothendieck - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique)

  • Mathieu Ribatet

    (IMAG - Institut Montpelliérain Alexander Grothendieck - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique)

Abstract

It is known that the historical observed returns used to estimate the expected return provide poor guides to predict the future returns. Consequently, the optimal portfolio weights are extremely sensitive to the return assumptions used. Getting information about the future evolution of different asset returns, could help the investors to obtain more efficient portfolio. The solution will be reached by estimating the portfolio risk by conditional variance or conditional semivari-ance. This strategy allows us to take advantage of returns prediction which will be obtained by nonparametric univariate methods. Prediction step uses kernel estimation of conditional mean. Application on the Chinese and the American markets are presented and discussed.

Suggested Citation

  • Hanene Ben Salah & Ali Gannoun & Mathieu Ribatet, 2016. "Conditional Mean-Variance and Mean-Semivariance models in portfolio optimization," Working Papers hal-01404752, HAL.
  • Handle: RePEc:hal:wpaper:hal-01404752
    Note: View the original document on HAL open archive server: https://inria.hal.science/hal-01404752v1
    as

    Download full text from publisher

    File URL: https://inria.hal.science/hal-01404752v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01404752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.