IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00593645.html

On the MaxMin Value of Stochastic Games with Imperfect Monitoring

Author

Listed:
  • Dinah Rosenberg

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Eilon Solan

    (TAU - School of Mathematical Sciences [Tel Aviv] - TAU - Raymond and Beverly Sackler Faculty of Exact Sciences [Tel Aviv] - TAU - Tel Aviv University)

  • Nicolas Vieille

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study zero-sum stochastic games in which players do not observe the actions of the opponent. Rather, they observe a stochastic signal that may depend on the state, and on the pair of actions chosen by the players. We assume each player observes the state and his own action. We propose a candidate for the max-min value, which does not depend on the information structure of player 2. We prove that player 2 can defend the proposed max-min value, and that in absorbing games player 1 can guarantee it. Analogous results hold for the min-max value. This paper thereby unites several results due to Coulomb.

Suggested Citation

  • Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2001. "On the MaxMin Value of Stochastic Games with Imperfect Monitoring," Working Papers hal-00593645, HAL.
  • Handle: RePEc:hal:wpaper:hal-00593645
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Solan, Eilon & Vieille, Nicolas, 2003. "Deterministic multi-player Dynkin games," Journal of Mathematical Economics, Elsevier, vol. 39(8), pages 911-929, November.
    3. Xavier Venel, 2015. "Commutative Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 403-428, February.
    4. Jean-François Mertens & Abraham Neyman & Dinah Rosenberg, 2009. "Absorbing Games with Compact Action Spaces," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 257-262, May.
    5. Levy, Yehuda, 2012. "Stochastic games with information lag," Games and Economic Behavior, Elsevier, vol. 74(1), pages 243-256.
    6. Eilon Solan, 2005. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 51-72, February.
    7. Abraham Neyman, 2002. "Stochastic games: Existence of the MinMax," Discussion Paper Series dp295, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00593645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.