IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04875499.html
   My bibliography  Save this paper

Forecasting sovereign CDS VOLATILITY: A comparison of univariate GARCH-class models

Author

Listed:
  • Saker Sabkha

    (CEROS - Centre d'Etudes et de Recherches sur les Organisations et la Stratégie - UPN - Université Paris Nanterre)

  • Christian de Peretti

    (ECL - École Centrale de Lyon - Université de Lyon, LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Sabrine Mallek

    (ICN Business School, CEREFIGE - Centre Européen de Recherche en Economie Financière et Gestion des Entreprises - UL - Université de Lorraine)

Abstract

Initialement ignoré par les investisseurs, le risque de crédit souverain a été réévalué à la hausse depuis les années 2000, ce qui a contribué à éveiller l'intérêt des spéculateurs pour les CDS souverains. Le besoin croissant de modèles de prévision précis nous a amenés à combler le vide dans la littérature en étudiant la prévisibilité de la volatilité des CDS souverains et en utilisant des modèles linéaires et non linéaires de la classe GARCH. Cet article utilise des données de 38 pays dans le monde, allant de janvier 2006 à mars 2017. Les résultats montrent que les marchés des CDS sont soumis à des périodes de regroupement de volatilité, de non-linéarité, d'effets de levier asymétriques et de comportement à longue mémoire. En utilisant 7 critères statistiques hétéroskédastiques et aucun critère hétéroskédastique robuste, les résultats montrent que les modèles partiellement intégrés surpassent les modèles de base de la classe GARCH en termes de capacité de prévision, permettant une flexibilité concernant le degré de persistance des chocs de variance. Malgré la divergence de la situation économique et des positions géographiques des pays composants notre échantillon, les modèles FIGARCH et FIEGARCH se révèlent principalement être les modèles les plus précis pour prédire la volatilité du marché du crédit.

Suggested Citation

  • Saker Sabkha & Christian de Peretti & Sabrine Mallek, 2020. "Forecasting sovereign CDS VOLATILITY: A comparison of univariate GARCH-class models," Post-Print hal-04875499, HAL.
  • Handle: RePEc:hal:journl:hal-04875499
    DOI: 10.3917/vse.209.0027
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    2. Fontana, Alessandro & Scheicher, Martin, 2016. "An analysis of euro area sovereign CDS and their relation with government bonds," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 126-140.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    5. Krishnan, C.N.V. & Ritchken, Peter H. & Thomson, James B., 2010. "Predicting credit spreads," Journal of Financial Intermediation, Elsevier, vol. 19(4), pages 529-563, October.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saker Sabkha & Christian de Peretti & Dorra Hmaied, 2018. "Forecasting sovereign CDS volatility: A comparison of univariate GARCH-class models," Working Papers hal-01769390, HAL.
    2. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    3. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    4. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    7. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    8. David McMillan & Raquel Quiroga Garcia, 2009. "Intra-day volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 19(8), pages 611-623.
    9. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    10. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    11. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    12. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    13. Alexandre Subbotin, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    14. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    15. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    16. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    17. Alessandro Cardinali, 2012. "An Out-of-sample Analysis of Mean-Variance Portfolios with Orthogonal GARCH Factors," International Econometric Review (IER), Econometric Research Association, vol. 4(1), pages 1-16, April.
    18. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
    19. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    20. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04875499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.