IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04586265.html
   My bibliography  Save this paper

Preferences of the French Population Regarding Access to Genetic Information: A Discrete Choice Experiment
[Préférences de la population française pour l’accès à l’information génétique : une étude de choix discrets]

Author

Listed:
  • Christine Peyron

    (LEDi - Laboratoire d'Economie de Dijon [Dijon] - UB - Université de Bourgogne - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Aurore Pélissier

    (FERDI - Fondation pour les Etudes et Recherches sur le Développement International)

  • Nicolas Krucien

Abstract

Cette étude analyse les préférences de la population française concernant l'information génétique potentiellement accessible avec la médecine génomique. Il s'agit plus précisément de savoir si la population française (i) est favorable ou non à connaitre tous les résultats possibles quant aux prédispositions génétiques ; (ii) a des préférences quant à la personne ou la modalité qui déciderait de la liste des résultats accessibles ; (iii) est favorable ou non à un accès des chercheurs aux données génétiques des patients. Cette étude mobilise la méthode des choix discrets, avec une enquête en ligne, conduite en France auprès d'un échantillon représentatif de 2 501 personnes. L'exploitation économétrique des données collectées utilise un modèle logit mixte qui permet d'établir la plus ou moins grande variabilité des préférences au sein de la population française. Les résultats montrent une volonté d'autonomie pour choisir les informations communiquées, le souhait d'accéder aux résultats génétiques les plus exhaustifs possibles et la valorisation d'une contribution à la recherche à travers la mise à disposition de ses données génétiques.

Suggested Citation

  • Christine Peyron & Aurore Pélissier & Nicolas Krucien, 2021. "Preferences of the French Population Regarding Access to Genetic Information: A Discrete Choice Experiment [Préférences de la population française pour l’accès à l’information génétique : une étude," Post-Print hal-04586265, HAL.
  • Handle: RePEc:hal:journl:hal-04586265
    DOI: 10.24187/ecostat.2021.524d.2044
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bliemer, Michiel C.J. & Rose, John M., 2013. "Confidence intervals of willingness-to-pay for random coefficient logit models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 199-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canessa, Carolin & Venus, Terese E. & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Incentives, Rewards or Both in Payments for Ecosystem Services: Drawing a Link Between Farmers' Preferences and Biodiversity Levels," Ecological Economics, Elsevier, vol. 213(C).
    2. Kruse, Tobias & Atkinson, Giles, 2022. "Understanding public support for international climate adaptation payments: Evidence from a choice experiment," Ecological Economics, Elsevier, vol. 194(C).
    3. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    4. Sagebiel, Julian & Glenk, Klaus & Meyerhoff, Jürgen, 2017. "Spatially explicit demand for afforestation," Forest Policy and Economics, Elsevier, vol. 78(C), pages 190-199.
    5. Bliemer, Michiel C.J. & Collins, Andrew T., 2016. "On determining priors for the generation of efficient stated choice experimental designs," Journal of choice modelling, Elsevier, vol. 21(C), pages 10-14.
    6. Hasan-Basri, Bakti & Mohd Mustafa, Muzafarshah & Bakar, Normizan, 2019. "Are Malaysian Consumers Willing to Pay for Hybrid Cars’ Attributes?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(1), pages 121-134.
    7. Svenningsen, Lea S. & Jacobsen, Jette Bredahl, 2018. "Testing the effect of changes in elicitation format, payment vehicle and bid range on the hypothetical bias for moral goods," Journal of choice modelling, Elsevier, vol. 29(C), pages 17-32.
    8. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    9. Collins Asante‐Addo & Daniela Weible, 2020. "Is there hope for domestically produced poultry meat? A choice experiment of consumers in Ghana," Agribusiness, John Wiley & Sons, Ltd., vol. 36(2), pages 281-298, April.
    10. Weller, Priska & Elsasser, Peter, 2018. "Preferences for forest structural attributes in Germany – Evidence from a choice experiment," Forest Policy and Economics, Elsevier, vol. 93(C), pages 1-9.
    11. Knoefel, Jan & Sagebiel, Julian & Yildiz, Özgür & Müller, Jakob R. & Rommel, Jens, 2018. "A consumer perspective on corporate governance in the energy transition: Evidence from a Discrete Choice Experiment in Germany," Energy Economics, Elsevier, vol. 75(C), pages 440-448.
    12. Nthambi, Mary & Wätzold, Frank & Markova-Nenova, Nonka, 2018. "Quantifying benefit losses from poor governance of climate change adaptation projects: A discrete choice experiment with farmers in Kenya," MPRA Paper 94678, University Library of Munich, Germany.
    13. Rajo, Lindelly A. & Michelle S, Segovia & Arias, Fredi & Marco A., Palma, 2016. "Willingness-to-Pay for an Educational Label: The Zamorano University Brand," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(01), pages 1-14, February.
    14. Jaqueline Carneiro Kerber & Diego Castro Fettermann & Marina Bouzon, 2024. "Effects of green and circular products' features on consumers' choice of remanufactured smartphones," Business Strategy and the Environment, Wiley Blackwell, vol. 33(3), pages 2331-2344, March.
    15. Kwabena Krah & Daniel R Petrolia & Angelica Williams & Keith H Coble & Ardian Harri & Roderick M Rejesus, 2018. "Producer Preferences for Contracts on a Risky Bioenergy Crop," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(2), pages 240-258.
    16. Sharma, Reema Bera & Majumdar, Bandhan Bandhu & Maitra, Bhargab, 2024. "Commuter and non-commuter preferences for plug-in hybrid electric vehicle: A case study of Delhi and Kolkata, India," Research in Transportation Economics, Elsevier, vol. 103(C).
    17. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    18. Rommel, Kai & Sagebiel, Julian, 2017. "Preferences for micro-cogeneration in Germany: Policy implications for grid expansion from a discrete choice experiment," Applied Energy, Elsevier, vol. 206(C), pages 612-622.
    19. Kruse, Tobias & Atkinson, Giles, 2022. "Understanding public support for international climate adaptation payments: evidence from a choice experiment," LSE Research Online Documents on Economics 112963, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    genomic medicine; Access to information; stated preferences; Discrete choice experiment DCE; médecine génomique; accès à l’information; préférences; méthode des choix discrets;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • I1 - Health, Education, and Welfare - - Health
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04586265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.