IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00281585.html
   My bibliography  Save this paper

Option Pricing under GARCH models with Generalized Hyperbolic innovations (I) : Methodology

Author

Listed:
  • Christophe Chorro

    () (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Dominique Guegan

    () (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics)

  • Florian Ielpo

    () (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, DEXIA - DEXIA S.A.)

Abstract

In this paper, we present an alternative to the Black Scholes model for a discrete time economy using GARCH-type models for the underlying asset returns with Generalized Hyperbolic (GH) innovations that are potentially skewed and leptokurtic. Assuming that the stochastic discount factor is an exponential affine function of the states variables, we show that this class of distributions is stable under the Risk neutral change of probability.

Suggested Citation

  • Christophe Chorro & Dominique Guegan & Florian Ielpo, 2008. "Option Pricing under GARCH models with Generalized Hyperbolic innovations (I) : Methodology," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00281585, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00281585
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00281585
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00281585/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415.
    4. Robert J. Elliott & Dilip B. Madan, 1998. "A Discrete Time Equivalent Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 127-152.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    10. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    11. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    12. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    13. Brown, David P & Gibbons, Michael R, 1985. " A Simple Econometric Approach for Utility-based Asset Pricing Models," Journal of Finance, American Finance Association, vol. 40(2), pages 359-381, June.
    14. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    15. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    16. repec:adr:anecst:y:2006:i:82:p:01 is not listed on IDEAS
    17. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2008. "Option pricing under GARCH models with generalized hyperbolic innovations (II): data and results," Documents de travail du Centre d'Economie de la Sorbonne b08047, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Guégan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    2. Chorro, C. & Guégan, D. & Ielpo, F., 2010. "Martingalized historical approach for option pricing," Finance Research Letters, Elsevier, vol. 7(1), pages 24-28, March.
    3. Lorenzo Mercuri & Fabio Bellini, 2014. "Option Pricing in a Dynamic Variance-Gamma Model," Papers 1405.7342, arXiv.org.

    More about this item

    Keywords

    risk neutral distribution; GARCH; Generalized Hyperbolic Distribution; pricing; risk neutral distribution.; Distribution hyperbolique généralisée; risque neutre.;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00281585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.