IDEAS home Printed from https://ideas.repec.org/p/fpr/ifprid/155261.html
   My bibliography  Save this paper

Farming for the future: Prioritization of climate-smart agriculture technologies in SAARC countries

Author

Listed:
  • Kapoor, Shreya
  • Sma, Abdelkarim
  • Pathak, Himanshu
  • Pradhan, Mamata

Abstract

Climate-smart agriculture (CSA) is pivotal in combating the impacts of climate change on global agriculture and food security. It has increasingly gained prominence as an adaptation strategy against the adverse impacts of climate change on agriculture, particularly in South Asia. However, scaling up the adoption of CSA interventions becomes critical, due to predominantly small and marginal nature of landholdings in the region, various institutional and policy constraints, and trade regulations and barriers. Another significant challenge lies in categorizing and prioritizing the multitude of technologies considered to be climate smart. Therefore, this study attempts to explore the different CSA technologies within the socio-economic context of six South Asian countries: Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka, with the main objective of proioritization and scaling-up of these methods. The study begins by compiling an inventory of existing technologies and subsequently prioritizing them by using the World Bank (WB) CSA Technology Index. Secondly, the study tries to address the key challenges and propose policy measures to upscale the adoption of CSA technologies in these countries using participatory research conducted with the key stakeholders in these countries. The participatory research provided valuable insights, revealing critical policy and institutional barriers, and providing a basis for framing strategies and policy solutions to facilitate wider adoption of CSA technologies in the region.

Suggested Citation

  • Kapoor, Shreya & Sma, Abdelkarim & Pathak, Himanshu & Pradhan, Mamata, 2024. "Farming for the future: Prioritization of climate-smart agriculture technologies in SAARC countries," IFPRI discussion papers 2285, International Food Policy Research Institute (IFPRI).
  • Handle: RePEc:fpr:ifprid:155261
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10568/155261
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Is direct seeded rice a boon for economic performance? Empirical evidence from India," Food Policy, Elsevier, vol. 73(C), pages 10-18.
    2. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    3. Devkota, M. & Devkota, K.P. & Acharya, S. & McDonald, A.J., 2019. "Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal," Agricultural Systems, Elsevier, vol. 173(C), pages 414-423.
    4. Abeysekara, Walimuni Chamindri Sewanka Mendis & Siriwardana, Mahinda & Meng, Samuel, 2023. "Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 435-450.
    5. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    6. Ngonidzashe Chirinda & Laura Arenas & Sandra Loaiza & Catalina Trujillo & Maria Katto & Paula Chaparro & Jonathan Nuñez & Jacobo Arango & Deissy Martinez-Baron & Ana María Loboguerrero & Luis A. Becer, 2017. "Novel Technological and Management Options for Accelerating Transformational Changes in Rice and Livestock Systems," Sustainability, MDPI, vol. 9(11), pages 1-16, October.
    7. Steven Franzel & Peter Cooper & Glenn L Denning, 2001. "Scaling up the benefits of agroforestry research: Lessons learned and research challenges," Development in Practice, Taylor & Francis Journals, vol. 11(4), pages 524-534, August.
    8. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Zeenatul & Sabiha, Noor E & Salim, Ruhul, 2022. "Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 59-72.
    2. Kapoor, Shreya & Pal, Barun Deb, 2024. "Impact of adoption of climate smart agriculture practices on farmer's income in semi-arid regions of Karnataka," Agricultural Systems, Elsevier, vol. 221(C).
    3. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Chi, Shuyao & Yao, Liuyang & Zhao, Guoxiong & Lu, Weinan & Zhao, Minjuan, 2024. "The performance of low carbon agricultural technologies on farmers' welfare: A meta-regression analysis of Asian cases," Ecological Economics, Elsevier, vol. 224(C).
    5. World Bank Group, 2016. "Making Climate Finance Work in Agriculture," World Bank Publications - Reports 25366, The World Bank Group.
    6. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    7. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    8. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    9. Kibria, Abu SMG & Costanza, Robert & Soto, José R, 2022. "Modeling the complex associations of human wellbeing dimensions in a coupled human-natural system: In contexts of marginalized communities," Ecological Modelling, Elsevier, vol. 466(C).
    10. Maren Radeny & Elizaphan J. O. Rao & Maurice Juma Ogada & John W. Recha & Dawit Solomon, 2022. "Impacts of climate-smart crop varieties and livestock breeds on the food security of smallholder farmers in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1511-1535, December.
    11. De Clercq, Djavan & Mahdi, Adam, 2024. "Feasibility of machine learning-based rice yield prediction in India at the district level using climate reanalysis and remote sensing data," Agricultural Systems, Elsevier, vol. 220(C).
    12. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., "undated". "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    13. Dongrui Han & Hongyan Cai & Xiaohuan Yang & Xinliang Xu, 2020. "Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    14. Sohail Abbas & Zulfiqar Ali Mayo, 2021. "Impact of temperature and rainfall on rice production in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1706-1728, February.
    15. Barooah, Prapti & Alvi, Muzna & Ringler, Claudia & Pathak, Vishal, 2023. "Gender, agriculture policies, and climate-smart agriculture in India," Agricultural Systems, Elsevier, vol. 212(C).
    16. Jeffrey D. Michler & Dewan Abdullah Al Rafi & Jonathan Giezendanner & Anna Josephson & Valerien O. Pede & Elizabeth Tellman, 2024. "Impact Evaluations in Data Poor Settings: The Case of Stress-Tolerant Rice Varieties in Bangladesh," Papers 2409.02201, arXiv.org, revised Jul 2025.
    17. repec:ags:aaea22:335506 is not listed on IDEAS
    18. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    20. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    21. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:ifprid:155261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.