IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2020_07.html
   My bibliography  Save this paper

Trouble Comes in Threes: Core stability in Minimum Cost Connection Networks

Author

Listed:
  • Jens Leth Hougaard

    (NYU-Shanghai, China
    Department of Food and Resource Economics, University of Copenhagen)

  • Mich Tvede

    (University of East Anglia)

Abstract

We consider a generalization of the Minimum Cost Spanning Tree (MCST) model dubbed the Minimum Cost Connection Network (MCCN) model, where network users have connection demands in the form of a pair of target nodes they want connected directly, or indirectly. Given a network which satisfies all connection demands at min-imum cost, the problem consists of allocating the total cost of the efficient network among its users. As such, every MCCN problem induces a cooperative cost game where the cost of each each coalition of users is given by the cost of an efficient net-work satisfying the demand of the users in the coalition. Unlike in the MCST model we show that the core of the induced cost game in the MCCN model can be empty (without introducing Steiner nodes). We therefore consider sufficient conditions for non-empty core. Theorem 1 shows that when the efficient network and the demand graph consist of the same components, the induced cost game has non-empty core. Theorem 2 shows that when the demand graph has at most two components the induced cost game has non-empty core.

Suggested Citation

  • Jens Leth Hougaard & Mich Tvede, 2020. "Trouble Comes in Threes: Core stability in Minimum Cost Connection Networks," IFRO Working Paper 2020/07, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2020_07
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2020/IFRO_WP_2020_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hougaard, Jens Leth & Moulin, Hervé, 2014. "Sharing the cost of redundant items," Games and Economic Behavior, Elsevier, vol. 87(C), pages 339-352.
    2. Hougaard, Jens Leth & Tvede, Mich, 2015. "Minimum cost connection networks: Truth-telling and implementation," Journal of Economic Theory, Elsevier, vol. 157(C), pages 76-99.
    3. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    4. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    5. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    6. Gustavo Bergantiños & Leticia Lorenzo, 2004. "A non-cooperative approach to the cost spanning tree problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 393-403, July.
    7. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    8. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
    9. Hervé Moulin, 2019. "Fair Division in the Internet Age," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 407-441, August.
    10. Peyton Young, H., 1998. "Cost allocation, demand revelation, and core implementation," Mathematical Social Sciences, Elsevier, vol. 36(3), pages 213-228, December.
    11. Christian Trudeau, 2013. "Characterizations Of The Kar And Folk Solutions For Minimum Cost Spanning Tree Problems," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-16.
    12. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
    13. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    14. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, March.
    15. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    16. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    17. Gustavo Bergantiños & Leticia Lorenzo, 2005. "Optimal Equilibria in the Non-Cooperative Game Associated with Cost Spanning Tree Problems," Annals of Operations Research, Springer, vol. 137(1), pages 101-115, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Leth Hougaard & Mich Tvede, 2020. "Implementation of Optimal Connection Networks," IFRO Working Paper 2020/06, University of Copenhagen, Department of Food and Resource Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hougaard, Jens Leth & Tvede, Mich, 2022. "Trouble comes in threes: Core stability in minimum cost connection networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 319-324.
    2. Jens Leth Hougaard & Mich Tvede, 2020. "Implementation of Optimal Connection Networks," IFRO Working Paper 2020/06, University of Copenhagen, Department of Food and Resource Economics.
    3. Hougaard, Jens Leth & Tvede, Mich, 2015. "Minimum cost connection networks: Truth-telling and implementation," Journal of Economic Theory, Elsevier, vol. 157(C), pages 76-99.
    4. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    5. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    6. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    7. Jens Leth Hougaard & Mich Tvede, 2010. "Strategyproof Nash Equilibria in Minimum Cost Spanning Tree Models," MSAP Working Paper Series 01_2010, University of Copenhagen, Department of Food and Resource Economics.
    8. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    9. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    10. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    11. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    12. Han, Lining & Juarez, Ruben, 2018. "Free intermediation in resource transmission," Games and Economic Behavior, Elsevier, vol. 111(C), pages 75-84.
    13. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    14. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    15. Ruben Juarez & Michael Wu, 2019. "Routing-Proofness in Congestion-Prone Networks," Games, MDPI, vol. 10(2), pages 1-18, April.
    16. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    17. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
    18. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    19. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
    20. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.

    More about this item

    Keywords

    Minimum Cost Connection Network; Minimum Cost Spanning Tree; Cost Sharing; Fair allocation; The core; Balanced games;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2020_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.